Publications by authors named "Tom S L Versluijs"

Shifts in phenology are among the key responses of organisms to climate change. When rates of phenological change differ between interacting species they may result in phenological asynchrony. Studies have found conflicting patterns concerning the direction and magnitude of changes in synchrony, which have been attributed to biological factors.

View Article and Find Full Text PDF

Arthropods play a crucial role in terrestrial ecosystems, for instance in mediating energy fluxes and in forming the food base for many organisms. To better understand their functional role in such ecosystem processes, monitoring of trends in arthropod biomass is essential. Obtaining direct measurements of the body mass of individual specimens is laborious.

View Article and Find Full Text PDF

With the global change in climate, the Arctic has been pinpointed as the region experiencing the fastest rates of change. As a result, Arctic biological responses-such as shifts in phenology-are expected to outpace those at lower latitudes. 15 years ago, a decade-long dataset from Zackenberg in High Arctic Greenland revealed rapid rates of phenological change.

View Article and Find Full Text PDF

Many organisms reproduce in seasonal environments, where selection on timing of reproduction is particularly strong as consumers need to synchronize reproduction with the peaked occurrence of their food. When a consumer species changes its phenology at a slower rate than its resources, this may induce a trophic mismatch, that is, offspring growing up after the peak in food availability, potentially leading to reductions in growth and survival. However, there is large variation in the degree of trophic mismatches as well as in its effects on reproductive output.

View Article and Find Full Text PDF

Evolutionary theories of seasonal migration generally assume that the costs of longer migrations are balanced by benefits at the non-breeding destinations. We tested, and rejected, the null hypothesis of equal survival and timing of spring migration for High Arctic breeding sanderling Calidris alba using six and eight winter destinations between 55°N and 25°S, respectively. Annual apparent survival was considerably lower for adult birds wintering in tropical West Africa (Mauritania: 0.

View Article and Find Full Text PDF