Improving the robustness of animals has become a priority in breeding due to climate change, new societal demands, and the agroecological transition. Components of animal robustness can be extracted from the analysis of the adaptive response of an animal to disturbance using longitudinal data. Nonetheless, this response is a function of animal robustness as well as of disturbance characteristics (intensity and duration).
View Article and Find Full Text PDFBackground: In animal genetics, linear mixed models are used to deal with genetic and environmental effects. The variance and covariance terms of these models are usually estimated by restricted maximum likelihood (REML), which provides unbiased estimators. A strong hypothesis of REML estimation is the multi-normality of the response variables.
View Article and Find Full Text PDFDue to the diversification of farming systems and climate change, farm animals are exposed to environmental disturbances to which they respond differently depending on their robustness. Disturbances such as heat stress or sanitary challenges (not always recorded, especially when they are of short duration and low intensity) have a transitory impact on animals, resulting in changes in phenotypes of production (feed intake, BW, etc.).
View Article and Find Full Text PDFAntineoplastic agents are, for most of them, highly toxic drugs prepared at hospital following individualized prescription. To protect patients and healthcare workers, it is important to develop analytical tools able to identify and quantify such drugs on a wide concentration range. In this context, surface enhanced Raman spectroscopy (SERS) has been tested as a specific and sensitive technique.
View Article and Find Full Text PDF