Publications by authors named "Tom Putzeys"

Two stimuli alternately presented at different locations can evoke a percept of a stimulus continuously moving between the two locations. The neural mechanism underlying this apparent motion (AM) is thought to be increased activation of primary visual cortex (V1) neurons tuned to locations along the AM path, although evidence remains inconclusive. AM masking, which refers to the reduced detectability of stimuli along the AM path, has been taken as evidence for AM-related V1 activation.

View Article and Find Full Text PDF

Research has shown that contour detection is impaired in the visual periphery for snake-shaped Gabor contours but not for circular and elliptical contours. This discrepancy in findings could be due to differences in intrinsic shape properties, including shape closure and curvature variation, as well as to differences in stimulus predictability and familiarity. In a detection task using only circular contours, the target shape is both more familiar and more predictable to the observer compared with a detection task in which a different snake-shaped contour is presented on each trial.

View Article and Find Full Text PDF

Pattern detection is the bedrock of modern vision science. Nearly half a century ago, psychophysicists advocated a quantitative theoretical framework that connected visual pattern detection with its neurophysiological underpinnings. In this theory, neurons in primary visual cortex constitute linear and independent visual channels whose output is linked to choice behavior in detection tasks via simple read-out mechanisms.

View Article and Find Full Text PDF

We investigated the role of spatial arrangement of texture elements in three psychophysical experiments on texture discrimination and texture segregation. In our stimuli, oriented Gabor elements formed an iso-oriented and a randomly oriented texture region. We manipulated (1) the orientation similarity in the iso-oriented region by adding orientation jitter to the orientation of each Gabor; (2) the spatial arrangement of the Gabors: quasi-random or regular; and (3) the shape of the edge between the two texture regions: straight or curved.

View Article and Find Full Text PDF

Several studies have reported optimal population decoding of sensory responses in two-alternative visual discrimination tasks. Such decoding involves integrating noisy neural responses into a more reliable representation of the likelihood that the stimuli under consideration evoked the observed responses. Importantly, an ideal observer must be able to evaluate likelihood with high precision and only consider the likelihood of the two relevant stimuli involved in the discrimination task.

View Article and Find Full Text PDF