The utilization of photoelectrochemical cells (PEC) for converting solar energy into fuels (e.g., hydrogen) is a promising method for sustainable energy generation.
View Article and Find Full Text PDFNanocomposites are constructed from a matrix material combined with dispersed nanosized filler particles. Such a combination yields a powerful ability to tailor the desired mechanical, optical, electrical, thermodynamic, and antimicrobial material properties. Colloidal semiconductor nanocrystals (SCNCs) are exciting potential fillers, as they display size-, shape-, and composition-controlled properties and are easily embedded in diverse matrices.
View Article and Find Full Text PDFIndium phosphide (InP) nanocrystals are emerging as an alternative to heavy metal containing nanocrystals for optoelectronic applications but lag behind in terms of synthetic control. Herein, luminescent wurtzite InP nanocrystals with narrow size distribution were synthesized via a cation exchange reaction from hexagonal CuP nanocrystals. A comprehensive surface treatment with NOBF was performed, which removes excess copper while generating stoichiometric In/P nanocrystals with fluoride surface passivation.
View Article and Find Full Text PDFSemiconductor nanocrystal based photoinitiators, quantum PIs, are a viable alternative to organic photoinitiators demonstrating unique advantages, including a broad and tunable excitation window, limited migration, and more. Aiming towards efficient quantum PIs with tunable properties, a deeper understanding of the relationships between the nanoparticle properties and their efficiency is required. Herein, we studied the morphological effect on ZnO nanocrystals functioning as photoinitiators in both water-based and solvent-free formulations by comparing rod and pyramidal shaped particles of similar volumes and nearly identical surface area.
View Article and Find Full Text PDF