We demonstrate InGaN-based semipolar 560 nm micro-light-emitting diodes with 2.5% EQE on high-quality and low-defect-density (20-21) GaN templates grown on scalable and low-cost sapphire substrates. Through transmission electron microscopy observations, we discuss how the management of misfit dislocations and their confinement in areas away from the active light-emitting region is necessary for improving device performance.
View Article and Find Full Text PDFThe synthesis, characterization, and incorporation of phenyl-C-butyric acid methyl ester (PCBM)-like derivatives as electron transporting materials (ETMs) in inverted perovskite solar cells (PSCs) are reported. These compounds have the same structure except for the ester substituent, which was varied from methyl to phenyl to thienyl and to pyridyl. The three latter derivatives performed better than PCBM in PSCs, mainly attributed to the specific interactions of the fullerenes with the perovskite layer, as evidenced by X-ray photoelectron spectroscopy (XPS) and steady-state and time-resolved photoluminescence (SS- and TRPL) measurements.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2017
Migration of additives to organic/metal interfaces can be used to self-generate interlayers in organic electronic devices. To generalize this approach for various additives, metals, and organic electronic devices it is first necessary to study the dynamics of additive migration from the bulk to the top organic/metal interface. In this study, we focus on a known cathode interlayer material, polyethylene glycol (PEG), as additive in P3HT:PCBM blends and study its migration to the blend/Al interface during metal deposition and its effect on organic solar cell (OSC) performance.
View Article and Find Full Text PDFFree-standing and supported films with a lateral gradient in composition were prepared using blends of poly(acrylic acid) (PAA)/sodium salt and its copolymers with acrylamide (AAm) in an applied electric field. The gradients were stabilized by complexation of carboxylate groups with metal species. To find the favorable conditions and components for successful blending and interaction with Fe and Ce species, we studied blending of the two PAA samples with molecular weights of 2000 and 15 000 Da with two copolymers of AA and AAm (with 10 and 70 wt % of AA units) and interaction of these blends with Fe(III) and Ce(IV) ions.
View Article and Find Full Text PDF