J Gastroenterol
March 2024
Gastro-oesophageal reflux disease (GORD) is a chronic condition characterised by visceral pain in the distal oesophagus. The current first-line treatment for GORD is proton pump inhibitors (PPIs), however, PPIs are ineffective in a large cohort of patients and long-term use may have adverse effects. Emerging evidence suggests that nerve fibre number and location are likely to play interrelated roles in nociception in the oesophagus of GORD patients.
View Article and Find Full Text PDFCardiac ischemia/reperfusion (I/R) injury following reperfusion therapy in acute myocardial infarction results in mitochondrial dynamic imbalance and cardiomyocyte apoptosis. Although diabetic patients taking metformin have been shown to have a lower risk of myocardial infarction, the efficacy of the cardioprotection conferred by metformin regarding the mitochondrial function and dynamic in cardiac I/R injury are still inconclusive. In addition, the comparative effects between different doses of metformin given acutely prior to cardiac I/R injury have never been investigated.
View Article and Find Full Text PDFMyocardial ischemia is the malperfusion of cardiac tissue due to a blockage in a coronary artery. Subsequent return of blood flow to the ischemic area of the heart, results in ischemia/reperfusion (I/R) injury in the heart and other organs, including the brain. Besides the cardioprotective effects of metformin on the heart against cardiac I/R injury, metformin also reduced neuronal injury in a stroke model.
View Article and Find Full Text PDFLargely as a consequence of changes in modern lifestyle, a significant proportion of global population have become obese. When obese people grow old, pathologies aggravate neurodegeneration. Several studies have demonstrated that both aging and obesity have deleterious impact on brain.
View Article and Find Full Text PDFCerebral ischaemia/reperfusion (I/R) injury is the transient loss, followed by rapid return, of blood flow to the brain. This condition is often caused by strokes and heart attacks. The underlying mechanisms resulting in brain damage during cerebral I/R injury include mitochondrial dysregulation, increased oxidative stress/reactive oxygen species, blood-brain-barrier breakdown, inflammation of the brain, and increased neuronal apoptosis.
View Article and Find Full Text PDF