Publications by authors named "Tom Laloum"

SR proteins are conserved RNA-binding proteins best known as splicing regulators that have also been implicated in other steps of gene expression. Despite mounting evidence for a role in plant development and stress responses, the molecular pathways underlying SR protein regulation of these processes remain poorly understood. Here we show that the plant-specific SCL30a SR protein negatively regulates ABA signaling to control seed traits and stress responses during germination in Arabidopsis.

View Article and Find Full Text PDF

Alternative splicing, which generates multiple transcripts from the same gene, is an important modulator of gene expression that can increase proteome diversity and regulate mRNA levels. In plants, this post-transcriptional mechanism is markedly induced in response to environmental stress, and recent studies have identified alternative splicing events that allow rapid adjustment of the abundance and function of key stress-response components. In agreement, plant mutants defective in splicing factors are severely impaired in their response to abiotic stress.

View Article and Find Full Text PDF

The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M.

View Article and Find Full Text PDF

During endosymbiotic interactions between legume plants and nitrogen-fixing rhizobia, successful root infection by bacteria and nodule organogenesis requires the perception and transduction of bacterial lipo-chitooligosaccharidic signal called Nod factor (NF). NF perception in legume roots leads to the activation of an early signaling pathway and of a set of symbiotic genes which is controlled by specific early transcription factors (TFs) including CYCLOPS/IPD3, NSP1, NSP2, ERN1 and NIN. In this study, we bring convincing evidence that the Medicago truncatula CCAAT-box-binding NF-YA1 TF, previously associated with later stages of rhizobial infection and nodule meristem formation is, together with its closest homolog NF-YA2, also an essential positive regulator of the NF-signaling pathway.

View Article and Find Full Text PDF
Article Synopsis
  • Rhizobial nodulation factors (NFs) trigger a signaling pathway in *Medicago truncatula* root hairs, engaging NSP1/NSP2 and ERN1 transcription factors to regulate the expression of ENOD11, crucial for nodulation.
  • NSP1 and NSP2 work together to positively influence ERN1 and ENOD11 expression, with ERN1 specifically activating ENOD11 during early infection stages and NSP1/NSP2 doing so in later stages.
  • The closely related ERN1 and ERN2 transcription factors show differing roles across infection stages, with ERN1 active early and ERN2 involved at specific infection points; however, they can functionally complement each other when expression patterns are altered
View Article and Find Full Text PDF

Transcription factors belonging to the CCAAT-box binding factor family (also known as the Nuclear Factor Y) are present in all higher eukaryotes. Studies in plants have revealed that each subunit of this heterotrimeric transcription factor is encoded by a gene belonging to a multigene family allowing a considerable modularity. In this review, we focus on recent findings concerning the expression patterns and potential functions of different members of these NF-Y protein families using a phylogenetic approach.

View Article and Find Full Text PDF