Publications by authors named "Tom Kouki"

In this article, we review studies which have been conducted to investigate the hormonal influence on metamorphosis in bullfrog (Rana catesbeiana) and Japanese toad (Bufo japonicus) larvae, in addition to studies conducted on the hormonal and pheromonal control of reproductive behavior in red-bellied newts (Cynops pyrrhogaster). Metamorphosis was studied with an emphasis on the roles of prolactin (PRL) and thyrotropin (TSH). The release of PRL was shown to be regulated by thyrotropin-releasing hormone (TRH) and that of TSH was evidenced to be regulated by corticotropin-releasing factor.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system characterized by remyelination failure, axonal degeneration, and progressive worsening of motor functions. Animal models of demyelination are frequently used to develop and evaluate therapies for MS. We recently reported that focal internal capsule (IC) demyelination in mice with lysophosphatidylcholine injection induced acute motor deficits followed by recovery through remyelination.

View Article and Find Full Text PDF

An appropriate sensory experience during the early developmental period is important for brain maturation. Dark rearing during the visual critical period delays the maturation of neuronal circuits in the visual cortex. Although the formation and structural plasticity of the myelin sheaths on retinal ganglion cell axons modulate the visual function, the effects of dark rearing during the visual critical period on the structure of the retinal ganglion cell axons and their myelin sheaths are still unclear.

View Article and Find Full Text PDF

Lysophosphatidylcholine (LPC)-induced demyelination is a versatile animal model that is frequently used to identify and examine molecular pathways of demyelination and remyelination in the central (CNS) and peripheral nervous system (PNS). However, identification of focally demyelinated lesion had been difficult and usually required tissue fixation, sectioning and histological analysis. Recently, a method for labeling and identification of demyelinated lesions in the CNS by intraperitoneal injection of neutral red (NR) dye was developed.

View Article and Find Full Text PDF

Mitochondrial dysfunction is significantly associated with neurological deficits and age-related neurological diseases. While mitochondria are dynamically regulated and properly maintained during neurogenesis, the manner in which mitochondrial activities are controlled and contribute to these processes is not fully understood. Mitochondrial transcription factor A (TFAM) contributes to mitochondrial function by maintaining mitochondrial DNA (mtDNA).

View Article and Find Full Text PDF

The anterior pituitary gland comprises five types of endocrine cells plus non-endocrine cells including folliculostellate cells, endothelial cells, and capillary mural cells (pericytes). In addition to being controlled by the hypothalamic-pituitary-target organ axis, the functions of these cells are likely regulated by local cell and extracellular matrix (ECM) interactions. However, these complex interactions are not fully understood.

View Article and Find Full Text PDF

Our previous studies indicated that hepatitis E virus (HEV) forms membrane-associated particles in the cytoplasm, most likely by budding into intracellular vesicles, and requires the multivesicular body (MVB) pathway to release virus particles, and the released HEV particles with a lipid membrane retain the trans-Golgi network protein 2 on their surface. To examine whether HEV utilizes the exosomal pathway to release the virus particles, we analysed whether the virion release from PLC/PRF/5 cells infected with genotype 3 HEV (strain JE03-1760F) is affected by treatment with bafilomycin A1 or GW4869, or by the introduction of a small interfering RNA (siRNA) against Rab27A or Hrs. The extracellular HEV RNA titre was increased by treatment with bafilomycin A1, but was decreased by treatment with GW4869.

View Article and Find Full Text PDF

A 66-year-old man was diagnosed with bladder cancer at our urology department. Three months later, he developed subacute progressive cerebellar limb ataxia and truncal oscillation. Analysis of cerebrospinal fluid showed pleocytosis and increased concentrations of protein, while brain magnetic resonance imaging revealed no abnormalities.

View Article and Find Full Text PDF

The anterior pituitary gland comprises 5 types of hormone-producing cells and non-endocrine cells, such as folliculostellate (FS) cells. The cells form a lobular structure surrounded by extracellular matrix (ECM) but are not randomly distributed in each lobule; hormone-producing cells have affinities for specific cell types (topographic affinity), and FS cells form a homotypic meshwork. To determine whether this cell and ECM organization can be reproduced in vitro, we developed a 3-dimensional (3D) model that utilizes hanging drop cell culture.

View Article and Find Full Text PDF

Pericytes are perivascular cells associated with capillaries. We previously demonstrated that pericytes, identified by desmin immunohistochemistry, produce type I and III collagens in the anterior pituitary gland of adult rats. In addition, we recently used desmin immunoelectron microscopy to characterize a novel type of perivascular cell, dubbed a desmin-immunopositive perivascular cell, in the anterior pituitary.

View Article and Find Full Text PDF

Pericytes are perivascular cells associated with microcirculation. Typically, they are localized close to the capillary wall, underneath the basement membrane, and have sparse cytoplasm and poorly developed cell organelles. However, the specific properties of pericytes vary by organ and the conditions within organs.

View Article and Find Full Text PDF

Folliculostellate (FS) cells in the anterior pituitary gland appear to have multifunctional properties. FS cells connect to each other at gap junctions and thereby form a histological and functional network. We have performed a series of studies on network formation in FS cells and recently reported that FS cells markedly prolong their cytoplasmic processes and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane.

View Article and Find Full Text PDF

Stroke-prone spontaneously hypertensive rats (SHRSP) are known to show necrosis of the femoral head with a frequency of about 50%. This rat has thus been used as an animal model for necrosis of the femoral head in many studies. In a detailed investigation of feeding vessel disorders that cause femoral head necrosis, we observed changes over time in the feeding vessels using scanning electron microscopy and transmission electron microscopy.

View Article and Find Full Text PDF

Folliculostellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture exhibited marked proliferation in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In a process referred to as matricrine action, FS cells receive ECM as a signal through their receptors, which results in morphological and functional changes.

View Article and Find Full Text PDF

Folliculo-stellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. FS cells connect to each other not only by mechanical means, but also by gap junctional cell-to-cell communication. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture markedly change their shape, and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane.

View Article and Find Full Text PDF

Cadherins are a family of transmembrane glycoproteins that mediate cell-to-cell adhesion. A change in cadherin type in cells, i.e.

View Article and Find Full Text PDF

Folliculo-stellate (FS) cells in the anterior pituitary gland appear to possess multifunctional properties. Recently, the development of transgenic rats (S100b-green fluorescent protein (GFP) rats) that express GFP specifically in FS cells in the anterior pituitary gland has allowed us to distinguish and observe living FS cells in other kinds of pituitary cells. We used S100b-GFP rats to investigate the topographic affinity of FS cells for other pituitary cells.

View Article and Find Full Text PDF

Retinoic acid (RA) plays a critical role in embryonic development, growth, and reproduction. RA is synthesized from retinoids via oxidation processes, and the oxidation of retinal to RA is catalyzed by the retinaldehyde dehydrogenases (RALDHs). We previously reported that RALDH1 mRNA was expressed in the anterior pituitary glands of adult rats and suppressed by administration of 17beta-estradiol in vivo.

View Article and Find Full Text PDF

As previously reported, the cerebral arterioles are surrounded by unique perivascular Mato cells. They contain many inclusion bodies rich in hydrolytic enzymes, and have strong uptake capacity. They are thus considered scavenger cells of vascular and neural tissues in steady-state.

View Article and Find Full Text PDF

Cadherins are a family of transmembrane glycoproteins that mediate cell-to-cell adhesion in solid tissues and have been reported to regulate not only morphogenesis but also cell motility, proliferation, and function by activating intracellular signaling pathways. We recently found that primordial cells in the developing rat adenohypophysis co-expressed E- and N-cadherins, but endocrine cells lost E-cadherin to possess only N-cadherin at certain embryonic stages. In the present study, we aimed to elucidate the temporal relationships between cadherin expression and cell proliferation as well as between cadherin expression and the onset of hormone production in embryonic adenohypophyses.

View Article and Find Full Text PDF

Folliculo-stellate (FS) cells in the anterior pituitary gland have been speculated to possess multifunctional properties. Because gap junctions (GJ) have been identified between FS cells, FS cells may be interconnected electrophysiologically by GJ and serve as signal transmission networks to modulate hormone release in the anterior pituitary gland. But whether GJ are localized among FS cells from the pars tuberalis through the pars distalis is unclear.

View Article and Find Full Text PDF

Retinoic acid (RA) plays a critical role in normal development and tissue maintenance and is also a regulatory factor of anterior pituitary cells. We previously demonstrated that a retinoic acid-synthesizing enzyme, retinaldehyde dehydrogenase 1 (RALDH1), is expressed in prolactin cells of adult rats and that estrogen suppressed RALDH1 expression. It is suggested that RA plays a role as a paracrine and/or autocrine signaling molecule in the anterior pituitary gland.

View Article and Find Full Text PDF

Retinoic acid (RA) plays a critical role in cell growth and tissue development and is also a regulatory factor of pituitary function. However, whether RA is generated in the pituitary gland and plays a role as a paracrine and/or autocrine factor is generally unknown. RA is synthesized from retinoids through oxidation processes.

View Article and Find Full Text PDF

It was previously reported that Mato cells (Mato's fluorescent granular perithelial cells) were frequently localized in the bifurcating areas of cerebral arterioles and occasionally, collagen fibers appeared close to Mato cells of aged rats. It has also been established that Mato cells were scavenger cells in the cerebral tissue and provided with MHC-class II antigen. The present paper deals with the relationship between the distribution of collagen fibers and Mato cells in the bifurcating area of cerebral arterioles.

View Article and Find Full Text PDF

Recently, we showed that hormone-producing cells express N-cadherin, while folliculo-stellate cells and marginal layer cells express E-cadherin in the adult rat anterior pituitary gland. These cells are believed to originate from a single cell population of the adenohypophyseal placode. In the present study, we immunohistochemically examined the divergence of cadherin types during pituitary histogenesis.

View Article and Find Full Text PDF