Interest in joint and segment contributions to pitched ball velocity has been dominated by inverse dynamic solutions, which is limited in ascertaining complex muscle/joint interactions. Our purpose was to use induced velocity analysis to investigate which joint(s) made the largest contribution to the velocity of a pitched ball. Pitching data were collected from six elite high school-aged pitchers with no history of arm injury.
View Article and Find Full Text PDFBaseball pitching imposes a dangerous valgus load on the elbow that puts the joint at severe risk for injury. The goal of this study was to develop a musculoskeletal modeling approach to enable evaluation of muscle-tendon contributions to mitigating elbow injury risk in pitching. We implemented a forward dynamic simulation framework that used a scaled biomechanical model to reproduce a pitching motion recorded from a high school pitcher.
View Article and Find Full Text PDF