Ethylene (ET) emitted by plant tissues has been broadly reported to play important roles in plant development, response to environmental stresses and defense against certain pathogens. Recent evidence obtained from using fungal cultures exposed to ET suggested that exogenous ET may regulate the production of aflatoxin by . However, the function of endogenous, seed-derived ET has not been explored.
View Article and Find Full Text PDFThe rotting of grains by seed-infecting fungi poses one of the greatest economic challenges to cereal production worldwide, not to mention serious risks to human and animal health. Among cereal production, maize is arguably the most affected crop, due to pathogen-induced losses in grain integrity and mycotoxin seed contamination. The two most prevalent and problematic mycotoxins for maize growers and food and feed processors are aflatoxin and fumonisin, produced by Aspergillus flavus and Fusarium verticillioides, respectively.
View Article and Find Full Text PDFHere, multiple functions of jasmonic acid (JA) in maize (Zea mays) are revealed by comprehensive analyses of JA-deficient mutants of the two oxo-phytodienoate reductase genes, OPR7 and OPR8. Single mutants produce wild-type levels of JA in most tissues, but the double mutant opr7 opr8 has dramatically reduced JA in all organs tested. opr7 opr8 displayed strong developmental defects, including formation of a feminized tassel, initiation of female reproductive buds at each node, and extreme elongation of ear shanks; these defects were rescued by exogenous JA.
View Article and Find Full Text PDFMol Plant Microbe Interact
February 2009
Plant and fungal lipoxygenases (LOX) catalyze the oxidation of polyunsaturated fatty acids, creating fatty-acid hydroperoxides (oxylipins). Fungal oxylipins are required for normal fungal development and secondary metabolism, and plant host-derived oxylipins interfere with these processes in fungi, presumably by signal mimicry. The maize LOX gene ZmLOX3 has been implicated previously in seed-Aspergillus interactions, so we tested the interactions of a mutant maize line (lox3-4, in which ZmLOX3 is disrupted) with the mycotoxigenic seed-infecting fungi Aspergillus flavus and Aspergillus nidulans.
View Article and Find Full Text PDF