Treatment Wetlands (TWs) are widely used for the treatment of domestic wastewater, with an increasing emphasis on provision of multiple co-benefits. However, concerns remain regarding achieving stringent phosphorus (P) discharge limits, system robustness and resilience, and associated guidance on system design and operation. Typically, where P removal is intended with a passive TW, surface flow (SF) systems are the chosen design type.
View Article and Find Full Text PDFIn the context of climate change and global trend towards greenfield urbanisation, stormwater and transported pollutants are expected to increase, impairing receiving environments. Constructed floating wetlands (CFWs) can improve stormwater retention pond performance. However, performance data are currently largely restricted to mesocosm experiments, limiting design enhancement fit for field implementation.
View Article and Find Full Text PDFThe effect of partially hydrolyzed polyacrylamide (HPAM) on structure and function of rhizosphere soil bacterial communities in constructed wetlands has been largely underinvestigated. In this study, we compare the effect of 250, 500, and 1000 mg/L of HPAM on bacterial community composition of Phragmites australis associated rhizosphere soils in an experimental wetland using MiSeq amplicon sequencing. Rhizosphere soils from the HPAM-free and the 500-mg/L-exposed treatments were used for laboratory experiments to further investigate the effect of HPAM on the soil's degradation and respiration activities.
View Article and Find Full Text PDFConstructed wetlands have been successfully used in the treatment of produced water brought to the surface in large quantities during oil extraction activities. However, with the increasing use of partially hydrolyzed polyacrylamide (HPAM) in enhancing oil recovery, the impacts of HPAM on the biological processes of wetlands is still unknown. Microbial mats in wetlands play a key role in hydrocarbon degradation.
View Article and Find Full Text PDFThis study reports a systematic assessment of treatment efficacy for 15 pilot-scale subsurface flow constructed wetlands of different designs for CBOD, TSS, TOC, TN, NH-N, NO-N, NO-N, and E. coli over the course of one year in an outdoor study to evaluate the effects of design and plants. The systems consisted of a range of designs: horizontal flow (HF) with 50 and 25 cm depth, unsaturated vertical flow (VF) with sand or fine gravel, and intensified systems (horizontal and saturated vertical flow with aeration, and reciprocating fill and drain).
View Article and Find Full Text PDFVarious types of cyanobacterial mats were predominant in a wetland, constructed for the remediation of oil-polluted residual waters from an oil field in the desert of the south-eastern Arabian Peninsula, although such mats were rarely found in other wetland systems. There is scarce information on the bacterial diversity, spatial distribution and oil-biodegradation capabilities of freshwater wetland oil-polluted mats. Microbial community analysis by Automated Ribosomal Spacer Analysis (ARISA) showed that the different mats hosted distinct microbial communities.
View Article and Find Full Text PDFFour side-by-side pilot-scale vertical flow (VF) constructed wetlands of different designs were evaluated for the removal of eight widely used emerging organic contaminants from municipal wastewater (i.e. ibuprofen, acetaminophen, diclofenac, tonalide, oxybenzone, triclosan, ethinylestradiol, bisphenol A).
View Article and Find Full Text PDFShortages of resources (chemical elements) used by growing industrial activities require new techniques for their acquisition. A suitable technique could be the use of wetlands for the enrichment of elements from produced water of the oil industry. Oil industries produce very high amounts of water in the course of oil mining.
View Article and Find Full Text PDF