Publications by authors named "Tom Golde"

Inspired by massive intermediate filament (IF) reorganization in superstretched epithelia, we examine computationally the principles controlling the mechanics of a set of entangled filaments whose ends slide on the cell boundary. We identify an entanglement metric and threshold beyond which random loose networks respond nonaffinely and nonlinearly to stretch by self-organizing into structurally optimal star-shaped configurations. A simple model connecting cellular and filament strains links emergent mechanics to cell geometry, network topology, and filament mechanics.

View Article and Find Full Text PDF

The function of organs such as lungs, kidneys and mammary glands relies on the three-dimensional geometry of their epithelium. To adopt shapes such as spheres, tubes and ellipsoids, epithelia generate mechanical stresses that are generally unknown. Here we engineer curved epithelial monolayers of controlled size and shape and map their state of stress.

View Article and Find Full Text PDF

Correction for 'The role of stickiness in the rheology of semiflexible polymers' by Tom Golde et al., Soft Matter, 2019, 15, 4865-4872.

View Article and Find Full Text PDF

Semiflexible polymers form central structures in biological material. Modelling approaches usually neglect influences of polymer-specific molecular features aiming to describe semiflexible polymers universally. Here, we investigate the influence of molecular details on networks assembled from filamentous actin, intermediate filaments, and synthetic DNA nanotubes.

View Article and Find Full Text PDF

The cytoskeleton is a highly interconnected meshwork of strongly coupled subsystems providing mechanical stability as well as dynamic functions to cells. To elucidate the underlying biophysical principles, it is central to investigate not only one distinct functional subsystem but rather their interplay as composite biopolymeric structures. Two of the key cytoskeletal elements are actin and vimentin filaments.

View Article and Find Full Text PDF

Bundled actin structures play an essential role in the mechanical response of the actin cytoskeleton in eukaryotic cells. Although responsible for crucial cellular processes, they are rarely investigated in comparison to single filaments and isotropic networks. Presenting a highly anisotropic structure, the determination of the mechanical properties of individual bundles was previously achieved through passive approaches observing bending deformations induced by thermal fluctuations.

View Article and Find Full Text PDF

The mechanics of complex soft matter often cannot be understood in the classical physical frame of flexible polymers or rigid rods. The underlying constituents are semiflexible polymers, whose finite bending stiffness (κ) leads to nontrivial mechanical responses. A natural model for such polymers is the protein actin.

View Article and Find Full Text PDF

Attractive depletion forces between rodlike particles in highly crowded environments have been shown through recent modeling and experimental approaches to induce different structural and dynamic signatures depending on relative orientation between rods. For example, it has been demonstrated that the axial attraction between two parallel rods yields a linear energy potential corresponding to a constant contractile force of 0.1 pN.

View Article and Find Full Text PDF

We studied the influence of fluorescent polystyrene beads on both entangled and cross-linked actin networks. Thermal bead fluctuations were observed via video particle tracking and analyzed with one-point microrheology. Illumination of fluorescent beads with their appropriate excitation wavelength leads to a drastic softening of actin gels.

View Article and Find Full Text PDF