Chromosomal inversions can provide windows onto the cytogenetic, molecular, evolutionary and demographic histories of a species. Here we investigate a paracentric 1.17-Mb inversion on chromosome 4 of Arabidopsis thaliana with nucleotide precision of its borders.
View Article and Find Full Text PDFBackground: Crossing over assures the correct segregation of the homologous chromosomes to both poles of the dividing meiocyte. This exchange of DNA creates new allelic combinations thus increasing the genetic variation present in offspring. Crossovers are not uniformly distributed along chromosomes; rather there are preferred locations where they may take place.
View Article and Find Full Text PDFMethods Mol Biol
March 2014
The large scale sequencing of insertion element flanking sequences has revolutionized reverse genetics in plant research: Insertion mutants can now simply be identified in silico by BLAST searching the resulting flanking sequence databases. The development of next-generation sequencing technologies has further facilitated the creation of flanking sequence collections derived from entire mutant populations. Here we describe a highly efficient and widely applicable method that we developed to amplify, sequence, and identify dTph1 transposon flanking sequences from a library of 1000 Petunia W138 individuals simultaneously.
View Article and Find Full Text PDFTransposon tagging has been used successfully in a range of organisms for the cloning of mutants of interest. In species containing high copy numbers of transposable elements combined with a high transposition rate, forward cloning can be quite challenging and requires specific high-resolution methods. Here we detail an updated version of the Transposon Display technique, which allows visualization of large numbers of transposon-flanking sequences simultaneously in a highly robust and reproducible manner.
View Article and Find Full Text PDFTransposable genetic elements are considered to be ubiquitous. Despite this, their mutagenic capacity has been exploited in only a few species. The main plant species are maize, Antirrhinum, and Petunia.
View Article and Find Full Text PDFGlobal warming is predicted to have a general negative effect on plant growth due to the damaging effect of high temperatures on plant development. The increasing threat of climatological extremes including very high temperatures might lead to catastrophic loss of crop productivity and result in wide spread famine. In this review, we assess the impact of global climate change on the agricultural crop production.
View Article and Find Full Text PDFBrassinosteroids (BRs) are steroidal plant hormones that play an important role in the growth and development of plants. The biosynthesis of sterols and BRs as well as the signalling cascade they induce in plants have been elucidated largely through metabolic studies and the analysis of mutants in Arabidopsis and rice. Only fragmentary details about BR signalling in other plant species are known.
View Article and Find Full Text PDFGielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm.
View Article and Find Full Text PDFAccording to the ABC(DE) model for flower development, C-genes are required for stamen and carpel development and floral determinacy, and D-genes were proposed to play a unique role in ovule development. Both C- and D-genes belong to the AGAMOUS (AG) subfamily of MADS box transcription factors. We show that the petunia (Petunia hybrida) C-clade genes PETUNIA MADS BOX GENE3 and FLORAL BINDING PROTEIN6 (FBP6) largely overlap in function, both in floral organ identity specification and floral determinacy, unlike the pronounced subfunctionalization observed in Arabidopsis thaliana and snapdragon (Antirrhinum majus).
View Article and Find Full Text PDFPentatricopeptide repeat (PPR) proteins belong to a family of approximately 450 members in Arabidopsis, of which few have been characterized. We identified loss of function alleles of SLO2, defective in a PPR protein belonging to the E+ subclass of the P-L-S subfamily. slo2 mutants are characterized by retarded leaf emergence, restricted root growth, and late flowering.
View Article and Find Full Text PDFBackground: Fluctuations in temperature occur naturally during plant growth and reproduction. However, in the hot summers this variation may become stressful and damaging for the molecular mechanisms involved in proper cell growth, impairing thus plant development and particularly fruit-set in many crop plants. Tolerance to such a stress can be achieved by constitutive gene expression or by rapid changes in gene expression, which ultimately leads to protection against thermal damage.
View Article and Find Full Text PDFPetunia is an excellent model system, especially for genetic, physiological and molecular studies. Thus far, however, genome-wide expression analysis has been applied rarely because of the lack of sequence information. We applied next-generation sequencing to generate, through de novo read assembly, a large catalogue of transcripts for Petunia axillaris and Petunia inflata.
View Article and Find Full Text PDFThe genome sequence of the plant model organism Arabidopsis thaliana was presented in December of the year 2000. Since then, the 125 Mb sequence has revealed many of its evolutionary secrets. Through comparative analyses with other plant genomes, we know that the genome of A.
View Article and Find Full Text PDFAngiosperms display a huge variety of floral forms. The development of the ABC-model for floral organ identity, almost 20 years ago, has created an excellent basis for comparative floral development (evo-devo) studies. These have resulted in an increasingly more detailed understanding of the molecular control circuitry of flower development, and the variations in this circuitry between species with different types of flowers.
View Article and Find Full Text PDFPetal fusion in petunia (Petunia x hybrida) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that determines further development. Here, we show that MAEWEST (MAW) and CHORIPETALA SUZANNE (CHSU) are required for petal and carpel fusion, as well as for lateral outgrowth of the leaf blade. Morphological and molecular analysis of maw and maw chsu double mutants suggest that polarity defects along the adaxial/abaxial axis contribute to the observed reduced lateral outgrowth of organ primordia.
View Article and Find Full Text PDFSEPALLATA (SEP) MADS-box genes are required for the regulation of floral meristem determinacy and the specification of sepals, petals, stamens, carpels and ovules, specifically in angiosperms. The SEP subfamily is closely related to the AGAMOUS LIKE6 (AGL6) and SQUAMOSA (SQUA) subfamilies. So far, of these three groups only AGL6-like genes have been found in extant gymnosperms.
View Article and Find Full Text PDFBLAST searchable databases containing insertion flanking sequences have revolutionized reverse genetics in plant research. The development of such databases has so far been limited to a small number of model species and normally requires extensive labour input. Here we describe a highly efficient and widely applicable method that we adapted to identify unique transposon-flanking genomic sequences in Petunia.
View Article and Find Full Text PDFIt is commonly thought that deep phylogenetic conservation of plant microRNAs (miRNAs) and their targets indicates conserved regulatory functions. We show that the blind (bl) mutant of Petunia hybrida and the fistulata (fis) mutant of Antirrhinum majus, which have similar homeotic phenotypes, are recessive alleles of two homologous miRNA-encoding genes. The BL and FIS genes control the spatial restriction of homeotic class C genes to the inner floral whorls, but their ubiquitous early floral expression patterns are in contradiction with a potential role in patterning C gene expression.
View Article and Find Full Text PDFWe analyzed changes in gene expression during male meiosis in Petunia by combining the meiotic staging of pollen mother cells from a single anther with cDNA-AFLP transcript profiling of mRNA from the synchronously developing sister anthers. The transcript profiling experiments focused on the identification of genes with a modulated expression profile during meiosis, while premeiotic archesporial cells and postmeiotic microspores served as a reference. About 8000 transcript tags, estimated at 30% of the total transcriptome, were generated, of which around 6% exhibited a modulated gene expression pattern at meiosis.
View Article and Find Full Text PDFDevelopmental programs rely on the timely and spatially correct expression of sets of interacting factors, many of which appear to be transcription factors. Examples of these can be found in the MADS-box gene family. This gene family has greatly expanded, particularly in plants, by a range of duplications that have enabled the genes to diversify in structure and function.
View Article and Find Full Text PDFAntirrhinum majus DEFICIENS (DEF) and Arabidopsis thaliana APETALA3 (AP3) MADS box proteins are required to specify petal and stamen identity. Sampling of DEF/AP3 homologs revealed two types of DEF/AP3 proteins, euAP3 and TOMATO MADS BOX GENE6 (TM6), within core eudicots, and we show functional divergence in Petunia hybrida euAP3 and TM6 proteins. Petunia DEF (also known as GREEN PETALS [GP]) is expressed mainly in whorls 2 and 3, and its expression pattern remains unchanged in a blind (bl) mutant background, in which the cadastral C-repression function in the perianth is impaired.
View Article and Find Full Text PDFIn the quest for fine mapping quantitative trait loci (QTL) at a subcentimorgan scale, several methods that involve the construction of inbred lines and the generation of large progenies of such inbred lines have been developed (Complex Trait Consortium 2003). Here we present an alternative method that significantly speeds up QTL fine mapping by using one segregating population. As a first step, a rough mapping analysis is performed on a small part of the population.
View Article and Find Full Text PDFResearch today aims to analyse the development of plant processes over evolutionary time. To obtain a representative view, a range of plant species covering at least the crucial nodes in phylogeny must be selected for an in depth analysis. Here we present Petunia as one of the available systems: as a representative of the Solanaceae it has the advantages of good culture conditions and the availability of a range of materials, techniques and strategies that can be used to research an interesting and diverse set of questions.
View Article and Find Full Text PDFThe lipid-rich, sticky exudate covering the stigma of solanaceous species such as tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) contains several proteins, of which only some have been characterized to date. Proteome analysis of the stigmatic exudate in both species revealed the presence of a cysteine-rich, slightly acidic 12-kD protein called stigma-specific protein 1 (STIG1). In both tobacco and petunia, Stig1 is highly expressed at the mRNA level in very young and developing flowers, whereas hardly any Stig1 transcript is detected in mature flowers.
View Article and Find Full Text PDF