Subsidence induced by groundwater depletion is a grave problem in many regions around the world, leading to a permanent loss of groundwater storage within an aquifer and even producing structural damage at the Earth's surface. California's Tulare Basin is no exception, experiencing about a meter of subsidence between 2015 and 2020. However, understanding the relationship between changes in groundwater volumes and ground deformation has proven difficult.
View Article and Find Full Text PDFRange change data, obtained from Synthetic Aperture Radar satellites, form the basis for estimates of aquifer volume change in California's Central Valley. The estimation algorithm incorporates a function penalizing changes far from known well locations, linking the aquifer volume changes to agricultural, industrial, and municipal pumping within the Tulare basin. We show that the range changes are compatible with the hypothesis that the source of aquifer volume changes are variations in effective pressure around documented wells.
View Article and Find Full Text PDFThe accelerated rate of decline in groundwater levels across California's Central Valley results from overdrafting and low rates of natural recharge and is exacerbated by droughts. The lack of observations with an adequate spatiotemporal resolution to constrain the evolution of groundwater resources poses severe challenges to water management efforts. Here we present SAR interferometric measurements of high-resolution vertical land motion across the valley, revealing multiscale patterns of aquifer hydrogeological properties and groundwater storage change.
View Article and Find Full Text PDF