Investigating flowing red blood cell (RBC) morphology and orientation is important for elucidating physiology and disease; existing commercially available products are limited to observing cell populations or single cells. In this protocol, we create a custom apparatus that combines coaxial brightfield microscopy with laser diffractometry to inspect near-real-time deformability, morphology, and orientation of flowing RBCs. There are difficulties associated with building optical systems for biological inspection; however, this protocol provides a suitable framework for developing an "ektacytoscope" for studying blood cells.
View Article and Find Full Text PDFRecent advances in micro-electromechanical systems (MEMS) has allowed unprecedent perspectives for label-free detection (LFD) of biological and chemical analytes. Additionally, these LFD technologies offer the potential to design high resolution and high throughput sensing platforms, with the promise of further miniaturization. However, the immobilization of biomolecules onto inorganic surfaces without impacting their sensing abilities is crucial for designing these LFD technologies.
View Article and Find Full Text PDFBlood is a non-Newtonian, shear-thinning fluid owing to the physical properties and behaviors of red blood cells (RBCs). Under increased shear flow, pre-existing clusters of cells disaggregate, orientate with flow, and deform. These essential processes enhance fluidity of blood, although accumulating evidence suggests that sublethal blood trauma-induced by supraphysiological shear exposure-paradoxically increases the deformability of RBCs when examined under low-shear conditions, despite obvious decrement of cellular deformation at moderate-to-higher shear stresses.
View Article and Find Full Text PDFIn an attempt to encourage some uniformity of preparation and response, the Department of Home Security issued its Terrorist Advisory Alert color codes. The authors have taken the Department's check-off form and amplified what can be done by healthcare facilities at each alert stage.
View Article and Find Full Text PDF