Current methods for combatting infectious diseases are largely limited to the prevention of infection, enhancing host immunity (via vaccination), and administration of small molecules to slow the growth of or kill pathogens (e.g. antimicrobials).
View Article and Find Full Text PDFIdentifying linked cases of infection is a critical component of the public health response to viral infectious diseases. In a clinical context, there is a need to make rapid assessments of whether cases of infection have arrived independently onto a ward, or are potentially linked via direct transmission. Viral genome sequence data are of great value in making these assessments, but are often not the only form of data available.
View Article and Find Full Text PDFSARS-CoV-2 is notable both for its rapid spread, and for the heterogeneity of its patterns of transmission, with multiple published incidences of superspreading behaviour. Here, we applied a novel network reconstruction algorithm to infer patterns of viral transmission occurring between patients and health care workers (HCWs) in the largest clusters of COVID-19 infection identified during the first wave of the epidemic at Cambridge University Hospitals NHS Foundation Trust, UK. Based upon dates of individuals reporting symptoms, recorded individual locations, and viral genome sequence data, we show an uneven pattern of transmission between individuals, with patients being much more likely to be infected by other patients than by HCWs.
View Article and Find Full Text PDFThe emergence of artemisinin-resistant Plasmodium falciparum malaria is a major threat to malaria elimination. New tools for supporting the surveillance of artemisinin resistance are critical for current and future malaria control and elimination strategies. We have developed an open-access, user-friendly, web-based tool to analyse parasite clearance half-life data of P.
View Article and Find Full Text PDF