Introduction: Sepsis is a major cause of morbidity and mortality worldwide. In the updated, 2016 Sepsis-3 criteria, sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, where organ dysfunction can be represented by an increase in the Sequential Organ Failure Assessment (SOFA) score of 2 points or more. We sought to apply the Sepsis-3 criteria to characterise the septic cohort in the Amsterdam University Medical Centres database (Amsterdam UMCdb).
View Article and Find Full Text PDFSepsis is a major healthcare problem with substantial mortality and a common reason for admission to the intensive care unit (ICU). For this reason, the management of sepsis is an important area of ICU research. A number of large-scale, freely-accessible ICU databases are available for observational research and the robust identification of septic patients in such data sets is crucial for research purposes, particularly for comparative studies between critical care sub-populations which may vary around the world.
View Article and Find Full Text PDFMultilevel linear models allow flexible statistical modelling of complex data with different levels of stratification. Identifying the most appropriate model from the large set of possible candidates is a challenging problem. In the Bayesian setting, the standard approach is a comparison of models using the model evidence or the Bayes factor.
View Article and Find Full Text PDFInferring nonlinear and asymmetric causal relationships between multivariate longitudinal data is a challenging task with wide-ranging application areas including clinical medicine, mathematical biology, economics, and environmental research. A number of methods for inferring causal relationships within complex dynamic and stochastic systems have been proposed, but there is not a unified consistent definition of causality in the context of time series data. We evaluate the performance of ten prominent causality indices for bivariate time series across four simulated model systems that have different coupling schemes and characteristics.
View Article and Find Full Text PDFWaveform physiological data are important in the treatment of critically ill patients in the intensive care unit. Such recordings are susceptible to artefacts, which must be removed before the data can be reused for alerting or reprocessed for other clinical or research purposes. Accurate removal of artefacts reduces bias and uncertainty in clinical assessment, as well as the false positive rate of ICU alarms, and is therefore a key component in providing optimal clinical care.
View Article and Find Full Text PDFHere we present an open-source R package 'meaRtools' that provides a platform for analyzing neuronal networks recorded on Microelectrode Arrays (MEAs). Cultured neuronal networks monitored with MEAs are now being widely used to characterize in vitro models of neurological disorders and to evaluate pharmaceutical compounds. meaRtools provides core algorithms for MEA spike train analysis, feature extraction, statistical analysis and plotting of multiple MEA recordings with multiple genotypes and treatments.
View Article and Find Full Text PDF