Publications by authors named "Tom Eccles"

Programming is a powerful and ubiquitous problem-solving tool. Systems that can assist programmers or even generate programs themselves could make programming more productive and accessible. Recent transformer-based neural network models show impressive code generation abilities yet still perform poorly on more complex tasks requiring problem-solving skills, such as competitive programming problems.

View Article and Find Full Text PDF

The success of human civilization is rooted in our ability to cooperate by communicating and making joint plans. We study how artificial agents may use communication to better cooperate in Diplomacy, a long-standing AI challenge. We propose negotiation algorithms allowing agents to agree on contracts regarding joint plans, and show they outperform agents lacking this ability.

View Article and Find Full Text PDF

We introduce DeepNash, an autonomous agent that plays the imperfect information game Stratego at a human expert level. Stratego is one of the few iconic board games that artificial intelligence (AI) has not yet mastered. It is a game characterized by a twin challenge: It requires long-term strategic thinking as in chess, but it also requires dealing with imperfect information as in poker.

View Article and Find Full Text PDF

We propose a multi-agent learning approach for designing crowdsourcing contests and All-Pay auctions. Prizes in contests incentivise contestants to expend effort on their entries, with different prize allocations resulting in different incentives and bidding behaviors. In contrast to auctions designed manually by economists, our method searches the possible design space using a simulation of the multi-agent learning process, and can thus handle settings where a game-theoretic equilibrium analysis is not tractable.

View Article and Find Full Text PDF