Objective: To develop a novel method for improved screening of sleep apnea in home environments, focusing on reliable estimation of the Apnea-Hypopnea Index (AHI) without the need for highly precise event localization.
Methods: RSN-Count is introduced, a technique leveraging Spiking Neural Networks to directly count apneic events in recorded signals. This approach aims to reduce dependence on the exact time-based pinpointing of events, a potential source of variability in conventional analysis.
A novel wideband parametric baseband macromodeling technique for passive photonic devices and circuits is presented. It allows to efficiently estimate the baseband scattering representations of a linear, passive photonic system as a function of a set of design variables, such as geometrical layout or substrate features. The proposed technique relies on the interpolation of macromodels computed via a complex vector fitting (CVF) algorithm, by adopting a methodology based on amplitude and frequency scaling that preserves, by construction, the physical properties of the system, such as causality, stability and passivity.
View Article and Find Full Text PDFRadar systems can be used to perform human activity recognition in a privacy preserving manner. This can be achieved by using Deep Neural Networks, which are able to effectively process the complex radar data. Often these networks are large and do not scale well when processing a large amount of radar streams at once, for example when monitoring multiple rooms in a hospital.
View Article and Find Full Text PDFIn this work, the use of Machine Learning methods for robust Received Signal Strength (RSS)-based Visible Light Positioning (VLP) is experimentally evaluated. The performance of Multilayer Perceptron (MLP) models and Gaussian processes (GP) is investigated when using relative RSS input features. The experimental set-up for the RSS-based VLP technology uses light-emitting diodes (LEDs) transmitting intensity modulated light and a single photodiode (PD) as a receiver.
View Article and Find Full Text PDFThis paper presents the Plug-Load Appliance Identification Dataset (PLAID), a labelled dataset containing records of the electrical voltage and current of domestic electrical appliances obtained at a high sampling frequency (30 kHz). The dataset contains 1876 records of individually-metered appliances from 17 different appliance types (e.g.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2020
Sleep apnea is one of the most common sleep-related breathing disorders. It is diagnosed through an overnight sleep study in a specialized sleep clinic. This setup is expensive and the number of beds and staff are limited, leading to a long waiting time.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2019
Sleep apnea is one of the most common sleep disorders and the consequences of undiagnosed sleep apnea can be very severe, ranging from increased blood pressure to heart failure. However, many people are often unaware of their condition. The gold standard for diagnosing sleep apnea is an overnight polysomnography in a dedicated sleep laboratory.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
Bone age is an essential measure of skeletal maturity in children with growth disorders. It is typically assessed by a trained physician using radiographs of the hand and a reference model. However, it has been described that the reference models leave room for interpretation leading to a large inter-observer and intra-observer variation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
Sleep apnea is one of the most common sleep disorders. It is characterized by the cessation of breathing during sleep due to airway blockages (obstructive sleep apnea) or disturbances in the signals from the brain (central sleep apnea). The gold standard for diagnosing sleep apnea is performing an overnight polysomnography recording which contains, among others, a wide array of respiratory signals.
View Article and Find Full Text PDFIntroduction: Blood cultures are often performed in the intensive care unit (ICU) to detect bloodstream infections and identify pathogen type, further guiding treatment. Early detection is essential, as a bloodstream infection can give cause to sepsis, a severe immune response associated with an increased risk of organ failure and death.
Problem Statement: The early clinical detection of a bloodstream infection is challenging but rapid targeted treatment, within the first place antimicrobials, substantially increases survival chances.
Predicting the bed occupancy of an intensive care unit (ICU) is a daunting task. The uncertainty associated with the prognosis of critically ill patients and the random arrival of new patients can lead to capacity problems and the need for reactive measures. In this paper, we work towards a predictive model based on Random Survival Forests which can assist physicians in estimating the bed occupancy.
View Article and Find Full Text PDFA difficulty in using Simultaneous Perturbation Stochastics Approximation (SPSA) is its performance sensitivity to the step sizes chosen at the initial stage of the iteration. If the step size is too large, the solution estimate may fail to converge. The proposed adaptive stepping method automatically reduces the initial step size of the SPSA so that reduction of the objective function value occurs more reliably.
View Article and Find Full Text PDFBMC Bioinformatics
February 2016
Background: Many algorithms have been developed to infer the topology of gene regulatory networks from gene expression data. These methods typically produce a ranking of links between genes with associated confidence scores, after which a certain threshold is chosen to produce the inferred topology. However, the structural properties of the predicted network do not resemble those typical for a gene regulatory network, as most algorithms only take into account connections found in the data and do not include known graph properties in their inference process.
View Article and Find Full Text PDFBackground: Predictive models for delayed graft function (DGF) after kidney transplantation are usually developed using logistic regression. We want to evaluate the value of machine learning methods in the prediction of DGF.
Methods: 497 kidney transplantations from deceased donors at the Ghent University Hospital between 2005 and 2011 are included.
The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of computational methods for identifying cell populations in multidimensional flow cytometry data. Here we report the results of FlowCAP-IV where algorithms from seven different research groups predicted the time to progression to AIDS among a cohort of 384 HIV+ subjects, using antigen-stimulated peripheral blood mononuclear cell (PBMC) samples analyzed with a 14-color staining panel. Two approaches (FlowReMi.
View Article and Find Full Text PDFAdvances in flow cytometry bioinformatics have resulted in a wide variety of clustering, classification and visualization techniques. To objectively evaluate the performance of such methods, common benchmarks such as the FlowCAP initiative have proven to be of great value. In this work, we report on a novel method, FloReMi, which was developed to tackle the most recent FlowCAP IV challenge.
View Article and Find Full Text PDFIntroduction: The length of stay of critically ill patients in the intensive care unit (ICU) is an indication of patient ICU resource usage and varies considerably. Planning of postoperative ICU admissions is important as ICUs often have no nonoccupied beds available.
Problem Statement: Estimation of the ICU bed availability for the next coming days is entirely based on clinical judgement by intensivists and therefore too inaccurate.
The number of markers measured in both flow and mass cytometry keeps increasing steadily. Although this provides a wealth of information, it becomes infeasible to analyze these datasets manually. When using 2D scatter plots, the number of possible plots increases exponentially with the number of markers and therefore, relevant information that is present in the data might be missed.
View Article and Find Full Text PDFThe near infrared (NIR) spectrum contains a global signature of composition, and enables to predict different proper ties of the material. In the present paper, a genetic algorithm and an adaptive modeling technique were applied to build a multiobjective least square support vector machine (MLS-SVM), which was intended to simultaneously determine the concentrations of multiple components by NIR spectroscopy. Both the benchmark corn dataset and self-made Forsythia suspense dataset were used to test the proposed approach.
View Article and Find Full Text PDFOne of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm.
View Article and Find Full Text PDFCurrent nurse call systems are very static. Call buttons are fixed to the wall, and systems do not account for various factors specific to a situation. We have developed a software platform, the ontology-based Nurse Call System (oNCS), which supports the transition to mobile and wireless nurse call buttons and uses an intelligent algorithm to address nurse calls.
View Article and Find Full Text PDFIn this study, a novel methodology is proposed to create heat maps that accurately pinpoint the outdoor locations with elevated exposure to radiofrequency electromagnetic fields (RF-EMF) in an extensive urban region (or, hotspots), and that would allow local authorities and epidemiologists to efficiently assess the locations and spectral composition of these hotspots, while at the same time developing a global picture of the exposure in the area. Moreover, no prior knowledge about the presence of radiofrequency radiation sources (e.g.
View Article and Find Full Text PDFHuman exposure to background radiofrequency electromagnetic fields (RF-EMF) has been increasing with the introduction of new technologies. There is a definite need for the quantification of RF-EMF exposure but a robust exposure assessment is not yet possible, mainly due to the lack of a fast and efficient measurement procedure. In this article, a new procedure is proposed for accurately mapping the exposure to base station radiation in an outdoor environment based on surrogate modeling and sequential design, an entirely new approach in the domain of dosimetry for human RF exposure.
View Article and Find Full Text PDFBackground: The current, place-oriented nurse call systems are very static. A patient can only make calls with a button which is fixed to a wall of a room. Moreover, the system does not take into account various factors specific to a situation.
View Article and Find Full Text PDF