Publications by authors named "Tom Desmet"

Article Synopsis
  • Dihydromyricetin has great pharmaceutical potential but is limited by poor solubility and stability, prompting the synthesis of glucosides to enhance its bioavailability.
  • Through the use of a specific sucrose phosphorylase variant, researchers developed three monoglucosides, with dihydromyricetin 4'--α-D-glucopyranoside being the most prevalent.
  • Acylation of this monoglucoside created three novel derivatives, and studies showed that modifications in their structure impacted both water solubility and antioxidant activity.
View Article and Find Full Text PDF

Background: Retinitis pigmentosa (RP), the leading cause of inherited blindness in adults, is marked by the progressive degeneration of rod photoreceptors in the retina. While gene therapy has shown promise in treating RP in patients with specific mutations, no effective therapies currently exist for the majority of patients with diverse genetic backgrounds. Additionally, no intervention can yet prevent or delay photoreceptor loss across the broader RP patient population.

View Article and Find Full Text PDF

Glycoside Hydrolase family 65 (GH65) is a unique family of carbohydrate-active enzymes. It is the first protein family to bring together glycoside hydrolases, glycoside phosphorylases and glycosyltransferases, thereby spanning a broad range of reaction types. These enzymes catalyze the hydrolysis, reversible phosphorolysis or synthesis of various α-glucosides, typically α-glucobioses or their derivatives.

View Article and Find Full Text PDF

Carbohydrate-active enzymes (CAZymes) can be found in all domains of life and play a crucial role in metabolic and physiological processes. CAZymes often possess a modular structure, comprising not only catalytic domains but also associated domains such as carbohydrate-binding modules (CBMs) and linker domains. By exploring the modular diversity of CAZy families, catalysts with novel properties can be discovered and further insight in their biological functions and evolutionary relationships can be obtained.

View Article and Find Full Text PDF

Plant cell walls are complex, multifunctional structures, built up of polysaccharides and proteins. The configuration and abundance of cell wall constituents determine cellular elongation and plant growth. The emphasis of this review is on rice, a staple crop with economic importance, serving as model for grasses/cereals.

View Article and Find Full Text PDF

Background: The CBM13 family comprises carbohydrate-binding modules that occur mainly in enzymes and in several ricin-B lectins. The ricin-B lectin domain resembles the CBM13 module to a large extent. Historically, ricin-B lectins and CBM13 proteins were considered completely distinct, despite their structural and functional similarities.

View Article and Find Full Text PDF

Despite their broad application potential, the widespread use of β-1,3-glucans has been hampered by the high cost and heterogeneity associated with current production methods. To address this challenge, scalable and economically viable processes are needed for the production of β-1,3-glucans with tailorable molecular mass distributions. Glycoside phosphorylases have shown to be promising catalysts for the bottom-up synthesis of β-1,3-(oligo)glucans since they combine strict regioselectivity with a cheap donor substrate (i.

View Article and Find Full Text PDF

Glycosidic osmolytes are widespread natural compounds that protect microorganisms and their macromolecules from the deleterious effects of various environmental stresses. Their protective properties have attracted considerable interest for industrial applications, especially as active ingredients in cosmetics and healthcare products. In that regard, the osmolyte glucosylglycerate is somewhat overlooked.

View Article and Find Full Text PDF

The reconstruction of ancestral sequences can offer a glimpse into the fascinating process of molecular evolution by exposing the adaptive pathways that shape the proteins found in nature today. Here, we track the evolution of the carbohydrate-active enzymes responsible for the synthesis and turnover of mannogen, a critical carbohydrate reserve in parasites. Biochemical characterization of resurrected enzymes demonstrated that mannoside phosphorylase activity emerged in an ancestral bacterial mannosyltransferase, and later disappeared in the process of horizontal gene transfer and gene duplication in .

View Article and Find Full Text PDF

The acylation of flavonoids serves as a means to alter their physicochemical properties, enhance their stability, and improve their bioactivity. Compared with natural flavonoid glycosides, the acylation of nonglycosylated flavonoids presents greater challenges since they contain fewer reactive sites. In this work, we propose an efficient strategy to solve this problem based on a first α-glucosylation step catalyzed by a sucrose phosphorylase, followed by acylation using a lipase.

View Article and Find Full Text PDF

Osmolytes are produced by various microorganisms as a defense mechanism to protect cells and macromolecules from damage caused by external stresses in harsh environments. Due to their useful stabilizing properties, these molecules are applied as active ingredients in a wide range of cosmetics and healthcare products. The metabolic pathways and biocatalytic syntheses of glycosidic osmolytes such as 2-O-α-D-glucosyl-D-glycerate often involve the action of a glycoside phosphorylase.

View Article and Find Full Text PDF

A promiscuous CDP-tyvelose 2-epimerase (TyvE) from Thermodesulfatator atlanticus (TaTyvE) belonging to the nucleotide sugar active short-chain dehydrogenase/reductase superfamily (NS-SDRs) was recently discovered. TaTyvE performs the slow conversion of NDP-glucose (NDP-Glc) to NDP-mannose (NDP-Man). Here, we present the sequence fingerprints that are indicative of the conversion of UDP-Glc to UDP-Man in TyvE-like enzymes based on the heptagonal box motifs.

View Article and Find Full Text PDF

Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[F]-fluoro-d-glucose ([F]FDG), the most common tracer used in clinical imaging, to form [F]-labeled disaccharides for detecting microorganisms based on their bacteria-specific glycan incorporation.

View Article and Find Full Text PDF

Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach, that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[ F]-fluoro-D-glucose ([ F]FDG), the most common tracer used in clinical imaging, to form [ F]-labeled disaccharides for detecting microorganisms based on their bacteria-specific glycan incorporation.

View Article and Find Full Text PDF

Rare sugars have recently attracted attention as potential sugar replacers. Understanding the biochemical and biological behavior of these sugars is of importance in (novel) food formulations and prevention of type 2 diabetes. In this study, we investigated whether rare sugars may positively affect intestinal and liver metabolism, as well as muscle insulin sensitivity, compared to conventional sugars.

View Article and Find Full Text PDF

The impact of glycosidic linkage of seven rare and new-to-nature disaccharides on gut bacteria was assessed in vitro. The community shift of the inocula from four donors in response to 1 % (w/v) disaccharide supplementation was captured by sequencing the 16S rRNA gene. A significant loss of bacterial alpha diversity, short lag time, low pH, and high total short-chain fatty acid displayed a faster fermentation of trehalose(Glc-α1,1α-Glc) and fibrulose(fructan, DP2-10).

View Article and Find Full Text PDF

The commercial value of specialty carbohydrates and glycosylated compounds has sparked considerable interest in the synthetic potential of carbohydrate-active enzymes (CAZymes). Protein engineering methods have proven to be highly successful in expanding the range of glycosylation reactions that these enzymes can perform efficiently and cost-effectively. The past few years have witnessed meaningful progress in this area, largely due to a sharper focus on the understanding of structure-function relationships and mechanistic intricacies.

View Article and Find Full Text PDF

Nucleotide sugar 4,6-dehydratases belong to the Short-chain Dehydrogenase/Reductase (SDR) superfamily and catalyze the conversion of an NDP-hexose to an NDP-4-keto-6-deoxy hexose, a key step in the biosynthesis of a plethora of deoxy and amino sugars. Here, we present a colorimetric assay for the detection of their reaction products (NDP-4-keto-6-deoxy hexoses) using concentrated sulfuric acid and an ethanolic resorcinol solution. Under these conditions, the keto-function of the dehydratase product reacts specifically with resorcinol to form an orange-red or pink complex for NDP-glucose/GDP-mannose and UDP-N-acetylglucosamine, respectively, with an absorption maximum at 510 nm.

View Article and Find Full Text PDF

Protein evolution or engineering studies are traditionally focused on amino acid substitutions and the way these contribute to fitness. Meanwhile, the insertion and deletion of amino acids is often overlooked, despite being one of the most common sources of genetic variation. Recent methodological advances and successful engineering stories have demonstrated that the time is ripe for greater emphasis on these mutations and their understudied effects.

View Article and Find Full Text PDF

Non-selective inhibition of different histone deacetylase enzymes by hydroxamic acid-based drugs causes severe side effects when used as a (long-term) cancer treatment. In this work, we searched for a potent zinc-binding group able to replace the contested hydroxamic acid by employing a lean inhibitor strategy. This instructed the synthesis of a set of HDAC6-selective inhibitors containing the more desirable mercaptoacetamide moiety.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide and is impacted by an unhealthy diet with excessive calories, although the role of sugars in NAFLD etiology remains largely unexplored. Rare sugars are natural sugars with alternative monomers and glycosidic bonds, which have attracted attention as sugar replacers due to developments in enzyme engineering and hence an increased availability. We studied the impact of (rare) sugars on energy production, liver cell physiology and gene expression in human intestinal colorectal adenocarcinoma (Caco-2) cells, hepatoma G2 (HepG2) liver cells and a coculture model with these cells.

View Article and Find Full Text PDF

Nucleotide sugar (NS) dehydratases play a central role in the biosynthesis of deoxy and amino sugars, which are involved in a variety of biological functions in all domains of life. Bacteria are true masters of deoxy sugar biosynthesis as they can produce a wide range of highly specialized monosaccharides. Indeed, deoxy and amino sugars play important roles in the virulence of gram-positive and gram-negative pathogenic species and are additionally involved in the biosynthesis of diverse macrolide antibiotics.

View Article and Find Full Text PDF

In view of the global pandemic of obesity and related metabolic diseases, there is an increased interest in alternative carbohydrates with promising physiochemical and health-related properties as a potential replacement for traditional sugars. However, our current knowledge is limited to only a small selection of carbohydrates, whereas the majority of alternative rare carbohydrates and especially their properties remain to be investigated. Unraveling their potential properties, like digestibility and glycemic content, could unlock their use in industrial applications.

View Article and Find Full Text PDF

GDP-mannose 3,5-epimerase (GM35E, GME) belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily and catalyses the conversion of GDP-d-mannose towards GDP-l-galactose. Although the overall reaction seems relatively simple (a double epimerization), the enzyme needs to orchestrate a complex set of chemical reactions, with no less than 6 catalysis steps (oxidation, 2x deprotonation, 2x protonation and reduction), to perform the double epimerization of GDP-mannose to GDP-l-galactose. The enzyme is involved in the biosynthesis of vitamin C in plants and lipopolysaccharide synthesis in bacteria.

View Article and Find Full Text PDF

The Glycoside Hydrolase Family 65 (GH65) is an enzyme family of inverting α-glucoside phosphorylases and hydrolases that currently contains 10 characterized enzyme specificities. However, its sequence diversity has never been studied in detail. Here, an in-silico analysis of correlated mutations was performed, revealing specificity-determining positions that facilitate annotation of the family's phylogenetic tree.

View Article and Find Full Text PDF