Publications by authors named "Tom De Vocht"

Purpose: Colistin is an antibiotic which is increasingly used as a last-resort therapy in critically-ill patients with multidrug resistant Gram-negative infections. The purpose of this study was to evaluate the mechanisms underlying colistin's pharmacokinetic (PK) behavior and to characterize its hepatic metabolism.

Methods: In vitro incubations were performed using colistin sulfate with rat liver microsomes (RLM) and with rat and human hepatocytes (RH and HH) in suspension.

View Article and Find Full Text PDF

Multidrug resistance-associated protein (MRP; ABCC gene family) mediated efflux transport plays an important role in the systemic and tissue exposure profiles of many drugs and their metabolites, and also of endogenous compounds like bile acids and bilirubin conjugates. However, potent and isoform-selective inhibitors of the MRP subfamily are currently lacking. Therefore, the purpose of the present work was to identify novel rat Mrp3 inhibitors.

View Article and Find Full Text PDF

Colistin (polymyxin E) is a polycation antibiotic which is increasingly used (administered as colistin methanesulfonate, CMS) as a salvage therapy in critically ill patients with multidrug resistant Gram-negative infections. Even though colistin has been used for more than 50 years, its metabolic fate is poorly understood. One of the current challenges for studying the pharmacokinetics (PK) is the precise and accurate determination of colistin in in vitro and in vivo studies.

View Article and Find Full Text PDF

Drug-induced cholestasis (DIC) poses a major challenge to the pharmaceutical industry and regulatory agencies. It causes both drug attrition and post-approval withdrawal of drugs. DIC represents itself as an impaired secretion and flow of bile, leading to the pathological hepatic and/or systemic accumulation of bile acids (BAs) and their conjugate bile salts.

View Article and Find Full Text PDF

What Is Known And Objective: Sampling volumes of blood from neonates is necessarily limited. However, most of the published propofol analysis assays require a relatively large blood sample volume (typically ≥0.5 mL).

View Article and Find Full Text PDF

Drug-induced cholestasis poses a major hurdle for the pharmaceutical industry as it is one the primary mechanisms of drug-induced liver injury. Hence, detection of drug-induced cholestasis during the early stages of drug development is of utmost importance. The most commonly used in vitro models rely on the extent of inhibition of bile salt export pump-mediated taurocholic acid transport, thereby assuming that drug-induced cholestasis mechanisms are merely restricted to the interaction with this sole hepatic transporter.

View Article and Find Full Text PDF

Transporters play a crucial role in the uptake of endo- and exogenous molecules in hepatocytes and efflux into the bile. The bile salt export pump (BSEP; ABCB11) is of major importance for efflux of bile salts to the bile and BSEP inhibition frequently provokes drug-induced cholestasis. This chapter describes two assays to determine inhibition of BSEP-mediated bile salt excretion.

View Article and Find Full Text PDF