Publications by authors named "Tom Cannon"

Spaceflight uniquely alters the physiology of both human cells and microbial pathogens, stimulating cellular and molecular changes directly relevant to infectious disease. However, the influence of this environment on host-pathogen interactions remains poorly understood. Here we report our results from the STL-IMMUNE study flown aboard Space Shuttle mission STS-131, which investigated multi-omic responses (transcriptomic, proteomic) of human intestinal epithelial cells to infection with Salmonella Typhimurium when both host and pathogen were simultaneously exposed to spaceflight.

View Article and Find Full Text PDF

Dormant spores of the fern Ceratopteris richardii were flown on Shuttle mission STS-93 to evaluate the effects of micro-g on their development and on their pattern of gene expression. Prior to flight the spores were sterilized and sown into one of two environments: (1) Microscope slides in a video-microscopy module; and (2) Petri dishes. All spores were then stored in darkness until use.

View Article and Find Full Text PDF

A compact, flow-through oxygen sensor device based on luminescence quenching was used to monitor dissolved oxygen levels during mammalian cell growth on the STS-93 mission of the Columbia space shuttle. Excitation of an oxygen-sensitive ruthenium complex was provided by a radioluminescent light source (0.9 mm in diameter, 2.

View Article and Find Full Text PDF