Publications by authors named "Tom C T Yin"

Spatial hearing, and more specifically the ability to localize sounds in space, is one of the most studied and best understood aspects of hearing. Because there is no coding of acoustic space at the receptor organ, physiological sensitivity to spatial aspects of sounds first emerges in the central nervous system. Much progress has been made in the identification and characterization of the circuits in the auditory brainstem that create sensitivity to binaural and monaural cues toward acoustic space.

View Article and Find Full Text PDF

The precedence effect (PE) is an auditory illusion that occurs when listeners localize nearly coincident and similar sounds from different spatial locations, such as a direct sound and its echo. It has mostly been studied in humans and animals with immobile heads in the horizontal plane; speaker pairs were often symmetrically located in the frontal hemifield. The present study examined the PE in head-unrestrained cats for a variety of paired-sound conditions along the horizontal, vertical, and diagonal axes.

View Article and Find Full Text PDF

Sound localization in cats and humans relies on head-centered acoustic cues. Studies have shown that humans are able to localize sounds during rapid head movements that are directed toward the target or other objects of interest. We studied whether cats are able to utilize similar dynamic acoustic cues to localize acoustic targets delivered during rapid eye-head gaze shifts.

View Article and Find Full Text PDF

Almost all behavioral studies of sound localization have used either an approach-to-target or pointing/orienting task to assess absolute sound localization performance, yet there are very few direct comparisons of these measures. In an approach-to-target task, the subject is trained to walk to a sound source from a fixed location. In an orienting task, finger, head and/or eye movements are monitored while the subject's body is typically constrained.

View Article and Find Full Text PDF

Although localization of sound in elevation is believed to depend on spectral cues, it has been shown with human listeners that the temporal features of sound can also greatly affect localization performance. Of particular interest is a phenomenon known as the negative level effect, which describes the deterioration of localization ability in elevation with increasing sound level and is observed only with impulsive or short-duration sound. The present study uses the gaze positions of domestic cats as measures of perceived locations of sound targets varying in azimuth and elevation.

View Article and Find Full Text PDF

Forward masking is traditionally measured with a detection task in which the addition of a preceding masking sound results in an increased signal-detection threshold. Little is known about the influence of forward masking on localization of free-field sound for human or animal subjects. Here we recorded gaze shifts of two head-unrestrained cats during localization using a search-coil technique.

View Article and Find Full Text PDF

While much is known about the metrics and kinematics of gaze shifts to visual targets in cats, little is known about gaze shifts to auditory targets. Here, cats were trained to localize auditory and visual targets via gaze shifts. Five properties of gaze shifts to sounds were observed.

View Article and Find Full Text PDF

Sound localization accuracy in elevation can be affected by sound spectrum alteration. Correspondingly, any stimulus manipulation that causes a change in the peripheral representation of the spectrum may degrade localization ability in elevation. The present study examined the influence of sound duration and level on localization performance in cats with the head unrestrained.

View Article and Find Full Text PDF

Sound localization along the azimuthal dimension depends on interaural time and level disparities, whereas localization in elevation depends on broadband power spectra resulting from the filtering properties of the head and pinnae. We trained cats with their heads unrestrained, using operant conditioning to indicate the apparent locations of sounds via gaze shift. Targets consisted of broadband (BB), high-pass (HP), or low-pass (LP) noise, tones from 0.

View Article and Find Full Text PDF

In models of temporal processing, time delays incurred by axonal propagation of action potentials play a prominent role. A pre-eminent model of temporal processing in audition is the binaural model of Jeffress (1948), which has dominated theories regarding our acute sensitivity to interaural time differences (ITDs). In Jeffress' model, a binaural cell is maximally active when the ITD is compensated by an internal delay, which brings the inputs from left and right ears in coincidence, and which would arise from axonal branching patterns of monaural input fibers.

View Article and Find Full Text PDF

The precedence effect (PE) is an auditory spatial illusion whereby two identical sounds presented from two separate locations with a delay between them are perceived as a fused single sound source whose position depends on the value of the delay. By training cats using operant conditioning to look at sound sources, we have previously shown that cats experience the PE similarly to humans. For delays less than +/-400 mus, cats exhibit summing localization, the perception of a "phantom" sound located between the sources.

View Article and Find Full Text PDF

Psychophysical experiments on the precedence effect (PE) in cats have shown that they localize pairs of auditory stimuli presented from different locations in space based on the spatial position of the stimuli and the interstimulus delay (ISD) between the stimuli in a manner similar to humans. Cats exhibit localization dominance for pairs of transient stimuli with |ISDs| from approximately 0.4 to 10 ms, summing localization for |ISDs| < 0.

View Article and Find Full Text PDF

The mammalian orienting response to sounds consists of a gaze shift that can be a combination of head and eye movements. In animals with mobile pinnae, the ears also move. During head movements, vision is stabilized by compensatory rotations of the eyeball within the head because of the vestibulo-ocular reflex (VOR).

View Article and Find Full Text PDF

Studies of sound localization use relative or absolute psychoacoustic paradigms. Relative tasks assess acuity by determining the smallest angle separating two sources that subjects can discriminate, the minimum audible angle (MAA), whereas absolute tasks measure subjects' abilities to indicate sound location. It is unclear whether or how measures from the two tasks are related, though the belief that the MAA is specifically related to the precision of absolute localization is common.

View Article and Find Full Text PDF

As an animal navigates its surroundings, the sounds reaching its two ears change in waveform similarity (interaural correlation) and in time of arrival (interaural time difference, ITD). Humans are exquisitely sensitive to these binaural cues, and it is generally agreed that this sensitivity involves coincidence detectors and internal delays that compensate for external acoustic delays (ITDs). Recent data show an unexpected relationship between the tuning of a neuron to frequency and to ITD, leading to several proposals for sources of internal delay and the neural coding of interaural temporal cues.

View Article and Find Full Text PDF

The lateral superior olive (LSO) is believed to encode differences in sound level at the two ears, a cue for azimuthal sound location. Most high-frequency-sensitive LSO neurons are binaural, receiving inputs from both ears. An inhibitory input from the contralateral ear, via the medial nucleus of the trapezoid body (MNTB), and excitatory input from the ipsilateral ear enable level differences to be encoded.

View Article and Find Full Text PDF

The Franssen Effect (FE) is a striking auditory illusion previously demonstrated only in humans. To elicit the FE, subjects are presented with two spatially-separated sounds; one a transient tone with an abrupt onset and immediate ramped offset and the other a sustained tone of the same frequency with a ramped onset which remains on for several hundred ms. The FE illusion occurs when listeners localize the tones at the location of the transient signal, even though that sound has ended and the sustained one is still present.

View Article and Find Full Text PDF

Initial analysis of interaural temporal disparities (ITDs), a cue for sound localization, occurs in the superior olivary complex. The medial superior olive (MSO) receives excitatory input from the left and right cochlear nuclei. Its neurons are believed to be coincidence detectors, discharging when input arrives simultaneously from the two sides.

View Article and Find Full Text PDF

In oculomotor research, there are two common methods by which the apparent location of visual and/or auditory targets are measured, saccadic eye movements with the head restrained and gaze shifts (combined saccades and head movements) with the head unrestrained. Because cats have a small oculomotor range (approximately +/-25 degrees), head movements are necessary when orienting to targets at the extremes of or outside this range. Here we tested the hypothesis that the accuracy of localizing auditory and visual targets using more ethologically natural head-unrestrained gaze shifts would be superior to head-restrained eye saccades.

View Article and Find Full Text PDF

Several auditory spatial illusions, collectively called the precedence effect (PE), occur when transient sounds are presented from two different spatial locations but separated in time by an interstimulus delay (ISD). For ISDs in the range of localization dominance (<10 ms), a single fused sound is typically located near the leading source location only, as if the location of the lagging source were suppressed. For longer ISDs, both the leading and lagging sources can be heard and localized, and the shortest ISD where this occurs is called the echo threshold.

View Article and Find Full Text PDF

We examined the motor error hypothesis of visual and auditory interaction in the superior colliculus (SC), first tested by Jay and Sparks in the monkey. We trained cats to direct their eyes to the location of acoustic sources and studied the effects of eye position on both the ability of cats to localize sounds and the auditory responses of SC neurons with the head restrained. Sound localization accuracy was generally not affected by initial eye position, i.

View Article and Find Full Text PDF

Mammals localize sound sources in azimuth based on two binaural cues, interaural differences in the time of arrival and level of the sounds at the ears. In contrast, the cue for elevation is based on patterns of the broadband power spectra at each ear that result from the direction-dependent acoustic filtering properties of the head and pinnae. Although the exact form of this "spectral shape" cue is unknown, most attention has been directed toward a prominent direction-dependent energy minimum, or "notch," because its location in frequency, for both humans and cats, moves predictably from low to high as a source is moved from low to high elevations.

View Article and Find Full Text PDF

The precedence effect (PE) describes several spatial perceptual phenomena that occur when similar sounds are presented from two different locations and separated by a delay. The mechanisms that produce the effect are thought to be responsible for the ability to localize sounds in reverberant environments. Although the physiological bases for the PE have been studied, little is known about how these sounds are localized by species other than humans.

View Article and Find Full Text PDF

Bimodal enhancement, a form of nonlinear summation of physiological responses from two sensory modalities, has been demonstrated in the intermediate layers of the superior colliculus (SCi) and is thought to be a manifestation of a neural mechanism underlying behavioral facilitation to such stimuli. Most physiological studies, however, have been performed in anesthetized animals. We tested for bimodal enhancement in the SCi of behaving cats trained to orient to acoustic, visual, and bimodal stimuli.

View Article and Find Full Text PDF