Publications by authors named "Tom C Lubensky"

Odd viscosity couples stress to strain rate in a dissipationless way. It has been studied in plasmas under magnetic fields, superfluid [Formula: see text], quantum-Hall fluids, and recently in the context of chiral active matter. In most of these studies, odd terms in the viscosity obey Onsager reciprocal relations.

View Article and Find Full Text PDF

We report the discovery and elucidation of giant spatiotemporal orientational fluctuations in nematic liquid crystal drops with radial orientation of the nematic anisotropy axis producing a central "hedgehog" defect. We study the spatial and temporal properties of the fluctuations experimentally using polarized optical microscopy, and theoretically, by calculating the eigenspectrum of the Frank elastic free energy of a nematic drop of radius R_{2}, containing a spherical central core of radius R_{1} and constrained by perpendicular boundary conditions on all surfaces. We find that the hedgehog defect with radial orientation has a complex excitation spectrum with a single critical mode whose energy vanishes at a critical value μ_{c} of the ratio μ=R_{2}/R_{1}.

View Article and Find Full Text PDF

In common fluids, viscosity is associated with dissipation. However, when time-reversal symmetry is broken a new type of nondissipative "viscosity" emerges. Recent theories and experiments on classical 2D systems with active spinning particles have heightened interest in "odd viscosity," but a microscopic theory for it in active materials is still absent.

View Article and Find Full Text PDF

Lipid rafts are hypothesized to facilitate protein interaction, tension regulation, and trafficking in biological membranes, but the mechanisms responsible for their formation and maintenance are not clear. Insights into many other condensed matter phenomena have come from colloidal systems, whose micron-scale particles mimic basic properties of atoms and molecules but permit dynamic visualization with single-particle resolution. Recently, experiments showed that bidisperse mixtures of filamentous viruses can self-assemble into colloidal monolayers with thermodynamically stable rafts exhibiting chiral structure and repulsive interactions.

View Article and Find Full Text PDF

The design and practical realization of composite materials that combine fluidity and different forms of ordering at the mesoscopic scale are among the grand fundamental science challenges. These composites also hold a great potential for technological applications, ranging from information displays to metamaterials. Here we introduce a fluid with coexisting polar and biaxial ordering of organic molecular and magnetic colloidal building blocks exhibiting the lowest symmetry orientational order.

View Article and Find Full Text PDF

An experimental and theoretical study of lyotropic chromonic liquid crystals (LCLCs) confined in cylinders with degenerate planar boundary conditions elucidates LCLC director configurations. When the Frank saddle-splay modulus is more than twice the twist modulus, the ground state adopts an inhomogeneous escaped-twisted configuration. Analysis of the configuration yields a large saddle-splay modulus, which violates Ericksen inequalities but not thermodynamic stability.

View Article and Find Full Text PDF

We study chiral symmetry-broken configurations of nematic liquid crystals (LCs) confined to cylindrical capillaries with homeotropic anchoring on the cylinder walls (i.e., perpendicular surface alignment).

View Article and Find Full Text PDF

We report on the homeotropic alignment of lyotropic chromonic liquid crystals (LCLCs). Homeotropic anchoring of LCLCs is difficult to achieve, and this challenge has limited development of applications for LCLCs. In this work, homeotropic alignment is achieved using noncovalent interactions between the LCLC molecules and various alignment layers including graphene, parylene films, poly(methyl methacrylate) films, and fluoropolymer films.

View Article and Find Full Text PDF

Confined liquid crystals (LC) provide a unique platform for technological applications and for the study of LC properties, such as bulk elasticity, surface anchoring, and topological defects. In this work, lyotropic chromonic liquid crystals (LCLCs) are confined in spherical droplets, and their director configurations are investigated as a function of mesogen concentration using bright-field and polarized optical microscopy. Because of the unusually small twist elastic modulus of the nematic phase of LCLCs, droplets of this phase exhibit a twisted bipolar configuration with remarkably large chiral symmetry breaking.

View Article and Find Full Text PDF

Mitosis in the early syncytial Drosophila embryo is highly correlated in space and time, as manifested in mitotic wavefronts that propagate across the embryo. In this paper we investigate the idea that the embryo can be considered a mechanically-excitable medium, and that mitotic wavefronts can be understood as nonlinear wavefronts that propagate through this medium. We study the wavefronts via both image analysis of confocal microscopy videos and theoretical models.

View Article and Find Full Text PDF

Smoke, fog, jelly, paints, milk and shaving cream are common everyday examples of colloids, a type of soft matter consisting of tiny particles dispersed in chemically distinct host media. Being abundant in nature, colloids also find increasingly important applications in science and technology, ranging from direct probing of kinetics in crystals and glasses to fabrication of third-generation quantum-dot solar cells. Because naturally occurring colloids have a shape that is typically determined by minimization of interfacial tension (for example, during phase separation) or faceted crystal growth, their surfaces tend to have minimum-area spherical or topologically equivalent shapes such as prisms and irregular grains (all continuously deformable--homeomorphic--to spheres).

View Article and Find Full Text PDF

We study the analogy between buckled colloidal monolayers and the triangular-lattice Ising antiferromagnet. We calculate free-volume-induced Ising interactions, show how lattice deformations favor zigzag stripes that partially remove the Ising model ground-state degeneracy, and identify the martensitic mechanism prohibiting perfect stripes. Slowly inflating the spheres yields jamming as well as logarithmically slow relaxation reminiscent of the glassy dynamics observed experimentally.

View Article and Find Full Text PDF

Geometric frustration arises when lattice structure prevents simultaneous minimization of local interaction energies. It leads to highly degenerate ground states and, subsequently, to complex phases of matter, such as water ice, spin ice, and frustrated magnetic materials. Here we report a simple geometrically frustrated system composed of closely packed colloidal spheres confined between parallel walls.

View Article and Find Full Text PDF