There is a general understanding in the scientific community as to how denitrifying bioreactors operate, but we lack a quantitative understanding of the details of the denitrification process acting within them and comprehensive models for simulating their performance. We hypothesized that nitrate transport through woodchip bioreactors would be best described by a dual-porosity transport model where the bioreactor water is divided into a mobile domain (i.e.
View Article and Find Full Text PDFNitrate in water removed from fields by subsurface drain ('tile') systems is often at concentrations exceeding the 10 mg N L(-1) maximum contaminant level (MCL) set by the USEPA for drinking water and has been implicated in contributing to the hypoxia problem within the northern Gulf of Mexico. Because previous research shows that N fertilizer management alone is not sufficient for reducing NO(3) concentrations in subsurface drainage below the MCL, additional approaches are needed. In this field study, we compared the NO(3) losses in tile drainage from a conventional drainage system (CN) consisting of a free-flowing pipe installed 1.
View Article and Find Full Text PDF