Soc Cogn Affect Neurosci
March 2024
Spatial trajectory planning and execution in a social context play a vital role in our daily lives. To study this process, participants completed a goal-directed task involving either observing a sequence of preferred goals and self-planning a trajectory (Self Sequencing) or observing and reproducing the entire trajectory taken by others (Other Sequencing). The results indicated that in the observation phase, witnessing entire trajectories created by others (Other Sequencing) recruited cerebellar mentalizing areas (Crus 2 and 1) and cortical mentalizing areas in the precuneus, ventral and dorsal medial prefrontal cortex and temporo-parietal junction more than merely observing several goals (Self Sequencing).
View Article and Find Full Text PDFPrevious studies have identified that the posterior cerebellum, which plays a role in processing temporal sequences in social events, is consistently and robustly activated when we predict future action sequences based on personality traits (Haihambo Haihambo et al. Social Cognitive and Affective Neuroscience 17(2), 241-251, 2022) and intentions (Haihambo et al. Cognitive, Affective, and Behavioral Neuroscience 23(2), 323-339, 2023).
View Article and Find Full Text PDFAlthough the human cerebellum has a surface that is about 80% of that of the cerebral cortex and has about four times as many neurons, its functional organization is still very much uncharted. Despite recent attempts to provide resting-state and task-based parcellations of the cerebellum, these two approaches lead to large discrepancies. This article describes a comprehensive task-based functional parcellation of the human cerebellum based on a large-scale functional database, NeuroSynth, involving an unprecedented diversity of tasks, which were reliably associated with ontological key terms referring to psychological functions.
View Article and Find Full Text PDFBYLEMANS, T., et al. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction.
View Article and Find Full Text PDFAdults diagnosed with autism experience difficulties with understanding the mental states of others, or themselves (mentalizing) and with adequately sequencing personal stories (narrative coherence). Given that the posterior cerebellum is implicated in both skills, as well as in the etiology of autism, we developed a narrative sequencing and mentalizing training for autistic adults. Participants with an official autism diagnosis were randomly assigned to a Training group ( = 17) or a waiting-list Control group ( = 15).
View Article and Find Full Text PDFRecent research has suggested that the posterior cerebellum encodes predictions and sequences of social actions, and also supports detecting inconsistent trait-implying actions of individuals as discussed by Pu et al. (2020, 2021). However, little is known about the role of the posterior cerebellum in detecting sequencing and inconsistencies by a group of individuals during social interaction.
View Article and Find Full Text PDFPrevious research on the beneficial effect of motion has postulated that learning a face in motion provides additional cues to recognition. Surprisingly, however, few studies have examined the beneficial effect of motion in an incidental learning task and developmental prosopagnosia (DP) even though such studies could provide more valuable information about everyday face recognition compared to the perception of static faces. In the current study, 18 young adults (Experiment 1) and five DPs and 10 age-matched controls (Experiment 2) participated in an incidental learning task during which both static and elastically moving unfamiliar faces were sequentially presented and were to be recognized in a delayed visual search task during which the faces could either keep their original presentation or switch (from static to elastically moving or vice versa).
View Article and Find Full Text PDF