Publications by authors named "Tom Bienaime"

We report on the observation of a prethermal state in a nonequilibrium, two-dimensional fluid of light. Direct measurements of the first order coherence function of the fluid reveal the dynamical emergence of algebraic correlations, a quasi-steady-state with properties close to those of thermal superfluids. By a controlled increase of the fluctuations, we observe a crossover from algebraic to short-range (exponential) correlations.

View Article and Find Full Text PDF

The rapid expansion of the early universe resulted in the spontaneous production of cosmological particles from vacuum fluctuations, some of which are observable today in the cosmic microwave background anisotropy. The analogue of cosmological particle creation in a quantum fluid was proposed, but the quantum, spontaneous effect due to vacuum fluctuations has not yet been observed. Here we report the spontaneous creation of analogue cosmological particles in the laboratory, using a quenched 3-dimensional quantum fluid of light.

View Article and Find Full Text PDF

We report on a versatile method to compensate the linear attenuation in a medium, independently of its microscopic origin. The method exploits diffraction-limited Bessel beams and tailored on-axis intensity profiles, which are generated using a phase-only spatial light modulator. This technique for compensating one of the most fundamental limiting processes in linear optics is shown to be efficient for a wide range of experimental conditions (modifying the refractive index and the attenuation coefficient).

View Article and Find Full Text PDF

The spin dynamics of a harmonically trapped Bose-Einstein condensed binary mixture of sodium atoms is experimentally investigated at finite temperature. In the collisional regime the motion of the thermal component is shown to be damped because of spin drag, while the two condensates exhibit a counterflow oscillation without friction, thereby providing direct evidence for spin superfluidity. Results are also reported in the collisionless regime where the spin components of both the condensate and thermal part oscillate without damping, their relative motion being driven by a mean-field effect.

View Article and Find Full Text PDF

Phase transitions are ubiquitous in our three-dimensional world. By contrast, most conventional transitions do not occur in infinite uniform low-dimensional systems because of the increased role of thermal fluctuations. The crossover between these situations constitutes an important issue, dramatically illustrated by Bose-Einstein condensation: a gas strongly confined along one direction of space may condense along this direction without exhibiting true long-range order in the perpendicular plane.

View Article and Find Full Text PDF

Dicke superradiance has been observed in many systems and is based on constructive interferences between many scattered waves. The counterpart of this enhanced dynamics, subradiance, is a destructive interference effect leading to the partial trapping of light in the system. In contrast to the robust superradiance, subradiant states are fragile, and spurious decoherence phenomena hitherto obstructed the observation of such metastable states.

View Article and Find Full Text PDF