Introduction: Cardiac resynchronisation therapy (CRT) corrects electrical dyssynchrony. However, the temporal changes in the electrical timing according to substrate are unclear. We used electrocardiographic imaging (ECGi) for serial non-invasive assessment of the underlying electrical substrate and its response to resynchronisation.
View Article and Find Full Text PDFStudy Hypothesis: We sought to investigate the association between echocardiographic optimisation and ventricular activation time in cardiac resynchronisation therapy (CRT) patients, obtained through the use of electrocardiographic mapping (ECM). We hypothesised that echocardiographic optimisation of the pacing delay between the atrial and ventricular leads-atrioventricular delay (AVD)-and the delay between ventricular leads-interventricular pacing interval (VVD)-would correlate with reductions in ventricular activation time.
Background: Optimisation of AVD and VVD may improve CRT patient outcome.
Background: Cardiac resynchronization therapy (CRT) is now generally delivered via quadripolar leads. Assessment of the effect of different vector programs from quadripolar leads on ventricular activation can be now done using non-invasive electrocardiographic mapping (ECM).
Material And Methods: In nineteen patients with quadripolar LV leads, activation maps were constructed.