Am J Physiol Endocrinol Metab
January 2024
Zinc is an essential component of the insulin protein complex synthesized in β cells. The intracellular compartmentalization and distribution of zinc are controlled by 24 transmembrane zinc transporters belonging to the ZnT or Zrt/Irt-like protein (ZIP) family. Downregulation of has been reported in pancreatic islets of patients with type 2 diabetes (T2D) as well as mouse models of high-fat diet (HFD)- or db/db-induced obesity.
View Article and Find Full Text PDFObjective: Zinc is an essential micronutrient that is critical for many physiological processes, including glucose metabolism, regulation of inflammation, and intestinal barrier function. Further, zinc dysregulation is associated with an increased risk of chronic inflammatory diseases such as type II diabetes, obesity, and inflammatory bowel disease. However, whether altered zinc status is a symptom or cause of disease onset remains unclear.
View Article and Find Full Text PDFManganese exposure produces Parkinson's-like neurologic symptoms, suggesting a selective dysregulation of dopamine transmission. It is unknown, however, how manganese accumulates in dopaminergic brain regions or how it regulates the activity of dopamine neurons. Our studies in male C57BLJ mice suggest that manganese accumulates in dopamine neurons of the VTA and substantia nigra via nifedipine-sensitive Ca channels.
View Article and Find Full Text PDFSkeletal muscle represents the largest pool of body zinc, however, little is known about muscle zinc homeostasis or muscle-specific zinc functions. Zip14 (Slc39a14) was the most highly expressed zinc transporter in skeletal muscle of mice in response to LPS-induced inflammation. We compared metabolic parameters of skeletal muscle from global Zip14 knockout (KO) and wild-type mice (WT).
View Article and Find Full Text PDFHyperostosis Cranialis Interna (HCI) is a rare bone disorder characterized by progressive intracranial bone overgrowth at the skull. Here we identified by whole-exome sequencing a dominant mutation (L441R) in SLC39A14 (ZIP14). We show that L441R ZIP14 is no longer trafficked towards the plasma membrane and excessively accumulates intracellular zinc, resulting in hyper-activation of cAMP-CREB and NFAT signaling.
View Article and Find Full Text PDFMutations in human have been linked to symptoms of the early onset of Parkinsonism and Dystonia. This phenotype is likely related to excess manganese accumulation in the CNS. The metal transporter ZIP14 (SLC39A14) is viewed primarily as a zinc transporter that is inducible via proinflammatory stimuli.
View Article and Find Full Text PDFInflammation and zinc dyshomeostasis are two common hallmarks of aging. A major zinc transporter ZIP14 (slc39a14) is upregulated by proinflammatory stimuli, e.g.
View Article and Find Full Text PDFZinc influences signaling pathways through controlled targeted zinc transport. Zinc transporter Zip14 KO mice display a phenotype that includes impaired intestinal barrier function with low grade chronic inflammation, hyperinsulinemia, and increased body fat, which are signatures of diet-induced diabetes (type 2 diabetes) and obesity in humans. Hyperglycemia in type 2 diabetes and obesity is caused by insulin resistance.
View Article and Find Full Text PDFTo evaluate the effect of diet on metabolic control and zinc metabolism in patients with type 2 diabetes mellitus (T2DM). One-week balanced diet was provided to 10 Brazilians patients with T2DM. Nutritional assessment, laboratorial parameters and expression of zinc transporter and inflammatory genes in peripheral blood mononuclear cells (PBMC) were performed.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
February 2016
Zinc is a signaling molecule in numerous metabolic pathways, the coordination of which occurs through activity of zinc transporters. The expression of zinc transporter Zip14 (Slc39a14), a zinc importer of the solute carrier 39 family, is stimulated under proinflammatory conditions. Adipose tissue upregulates Zip14 during lipopolysaccharide-induced endotoxemia.
View Article and Find Full Text PDFZinc transporters have been characterized to further understand the absorption and metabolism of dietary zinc. Our goal was to characterize zinc transporter Slc39a11 (ZIP11) expression and its subcellular localization within cells of the murine gastrointestinal tract of mice and to determine if dietary zinc regulates ZIP11. The greatest ZIP11 expression was in the stomach, cecum, and colon.
View Article and Find Full Text PDFZIP14 (slc39A14) is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia) of acute inflammation. ZIP14 can transport Zn(2+) and non-transferrin-bound Fe(2+) in vitro.
View Article and Find Full Text PDFBackground & Aims: Zinc homeostasis in cells is maintained through tight regulation of zinc influx, efflux, and distribution to intracellular organelles by zinc transporters. The Zrt-Irt-like protein (ZIP) transporters facilitate zinc influx to the cytosol. Expression of the ZIP family member Zip14 can be induced by inflammatory cytokines, which also initiate liver regeneration.
View Article and Find Full Text PDFAn effective measure to assess zinc status of humans has remained elusive, in contrast to iron, where a number of indicators of metabolism/function are available. Using monocytes, T lymphocytes, and granulocytes isolated by magnetic sorting and dried blood spots (DBS) derived from 50 mul of peripheral blood, we evaluated the response of metallothionein (MT), zinc transporter, and cytokine genes to a modest (15 mg of Zn per day) dietary zinc supplement in human subjects. Transcript abundance was measured by quantitative real-time RT-PCR (QRT-PCR).
View Article and Find Full Text PDF