Forage maize is often infected by mycotoxin-producing fungi during plant growth, which represent a serious health risk to exposed animals. Deoxynivalenol (DON) and zearalenone (ZEN) are among the most important mycotoxins, but little is known about the occurrence of their modified forms in forage maize. To assess the mycotoxin contamination in Northern Germany, 120 natural contaminated forage maize samples of four cultivars from several locations were analysed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) for DON and ZEN and their modified forms deoxynivalenol-3-glucoside (DON3G), the sum of 3- and 15-acetyl-deoxynivalenol (3+15-AcDON), α- and β-zearalenol (α-ZEL, β-ZEL).
View Article and Find Full Text PDFFusarium mycotoxins and their derivatives are frequently detected in freshly harvested forage maize. This study assessed the time course effects during ensiling of forage maize on the fate of Fusarium mycotoxins, using laboratory-scale silos and artificially contaminated raw material. A multi-mycotoxin liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method was used to determine the levels of deoxynivalenol (DON), zearalenone (ZEN) and their derivatives DON-3-glucoside, 3-acetyl-DON, 15-acetyl-DON, deepoxy-DON, α-zearalenol and β-zearalenol.
View Article and Find Full Text PDFThe selective and sensitive analysis of mycotoxins in highly complex feed matrices is a great challenge. In this study, the suitability of Orbitrap-based high-resolution mass spectrometry (HRMS) for routine mycotoxin analysis in complex feeds was demonstrated by the successful validation of a full MS/data-dependent MS/MS acquisition method for the quantitative determination of eight mycotoxins in forage maize and maize silage according to the Commission Decision 2002/657/EC. The required resolving power for accurate mass assignments (<5 ppm) was determined as 35,000 full width at half maximum (FWHM) and 70,000 FWHM for forage maize and maize silage, respectively.
View Article and Find Full Text PDF