J Geophys Res Space Phys
April 2021
Electromagnetic ion cyclotron (EMIC) waves play important roles in particle loss processes in the magnetosphere. Determining the evolution of EMIC waves as they propagate and how this evolution affects wave-particle interactions requires accurate knowledge of the wave vector, . We present a technique using the curl of the wave magnetic field to determine observationally, enabled by the unique configuration and instrumentation of the Magnetospheric MultiScale (MMS) spacecraft.
View Article and Find Full Text PDFEnergetic neutral atoms (ENAs) created by charge-exchange of ions with the Earth's hydrogen exosphere near the subsolar magnetopause yield information on the distribution of plasma in the outer magnetosphere and magnetosheath. ENA observations from the Interstellar Boundary Explorer (IBEX) are used to image magnetosheath plasma and, for the first time, low-energy magnetospheric plasma near the magnetopause. These images show that magnetosheath plasma is distributed fairly evenly near the subsolar magnetopause; however, low-energy magnetospheric plasma is not distributed evenly in the outer magnetosphere.
View Article and Find Full Text PDFThe Magnetospheric Multiscale (MMS) spacecraft encounter an electron diffusion region (EDR) of asymmetric magnetic reconnection at Earth's magnetopause. The EDR is characterized by agyrotropic electron velocity distributions on both sides of the neutral line. Various types of plasma waves are produced by the magnetic reconnection in and near the EDR.
View Article and Find Full Text PDF