Publications by authors named "Toldra A"

Analytical systems based on isothermal nucleic acid amplification tests (NAATs) paired with electroanalytical detection enable cost-effective, sensitive, and specific digital pathogen detection for various in situ applications such as point-of-care medical diagnostics, food safety monitoring, and environmental surveillance. Self-assembled monolayers (SAMs) on gold surfaces are reliable platforms for electroanalytical DNA biosensors. However, the lack of automation and scalability often limits traditional chip-based systems.

View Article and Find Full Text PDF

A paper microfluidic device capable of conducting enzyme-linked assays is presented: a microfluidic enzyme-linked paper analytical device (μEL-PAD). The system exploits a wash-free sandwich coupling to form beads/analyte/enzyme complexes, which are subsequently added to the vertical flow device composed of wax-printed paper, waxed nitrocellulose membrane and absorbent/barrier layers. The nitrocellulose retains the bead complexes without disrupting the flow, enabling for an efficient washing step.

View Article and Find Full Text PDF

The realization of electrochemical nucleic acid amplification tests (NAATs) at the point of care (POC) is highly desirable, but it remains a challenge given their high cost and lack of true portability/miniaturization. Here we show that mass-produced, industrial standardized, printed circuit boards (PCBs) can be repurposed to act as near-zero cost electrodes for self-assembled monolayer-based DNA biosensing, and further integration with a custom-designed and low-cost portable potentiostat. To show the analytical capability of this system, we developed a NAAT using isothermal recombinase polymerase amplification, bypassing the need of thermal cyclers, followed by an electrochemical readout relying on a sandwich hybridization assay.

View Article and Find Full Text PDF

Several genera of marine dinoflagellates are known to produce bioactive compounds that affect human health. Among them, Gambierdiscus and Fukuyoa stand out for their ability to produce several toxins, including the potent neurotoxic ciguatoxins (CTXs), which accumulate through the food web. Once fishes contaminated with CTXs are ingested by humans, it can result in an intoxication named ciguatera.

View Article and Find Full Text PDF

Nucleic acid amplification tests (NAATs) are very sensitive and specific methods, but they mainly rely on centralized laboratories and therefore are not suitable for point-of-care testing. Here, we present a 3D microfluidic paper-based electrochemical NAAT. These devices use off-the-shelf gold plasma-coated threads to integrate electroanalytical readouts using self-assembled monolayer formation on the threads prior to assembling into the paper device.

View Article and Find Full Text PDF

Plasmonic nanosensors for label-free detection of DNA require excellent sensing resolution, which is crucial when monitoring short DNA sequences, as these induce tiny peak shifts, compared to large biomolecules. We report a versatile and simple strategy for plasmonic sensor signal enhancement by assembling multiple (four) plasmonic sensors in series. This approach provided a fourfold signal enhancement, increased signal-to-noise ratio, and improved sensitivity for DNA detection.

View Article and Find Full Text PDF

Enzymes are the cornerstone of modern biotechnology. Achromopeptidase (ACP) is a well-known enzyme that hydrolyzes a number of proteins, notably proteins on the surface of Gram-positive bacteria. It is therefore used for sample preparation in nucleic acid tests.

View Article and Find Full Text PDF

The easy and rapid spread of bacterial contamination and the risk it poses to human health makes evident the need for analytical methods alternative to conventional time-consuming laboratory-based techniques for bacterial detection. To tackle this demand, biosensors based on isothermal DNA amplification methods have emerged, which avoid the need for thermal cycling, thus facilitating their integration into small and low-cost devices for in situ monitoring. This review focuses on the breakthroughs made on biosensors based on isothermal amplification methods for the detection of bacteria in the field of food safety and environmental monitoring.

View Article and Find Full Text PDF

Gambierdiscus and Fukuyoa are genera of toxic dinoflagellates which were mainly considered as endemic to marine intertropical areas, and that are well known as producers of ciguatoxins (CTXs) and maitotoxins (MTXs). Ciguatera poisoning (CP) is a human poisoning occurring after the consumption of fish or more rarely, shellfish containing CTXs. The presence of these microalgae in a coastal area is an indication of potential risk of CP.

View Article and Find Full Text PDF

The species affects shellfish, contributing significantly to high economic losses during production. To counteract the threat related to mortality, there is a need for the development of novel point-of-care testing (POCT) that can be implemented in aquaculture production to prevent disease outbreaks. In this study, a simple, rapid and specific colorimetric loop-mediated isothermal amplification (LAMP) assay has been developed for the detection of (OsHV-1) and its variants infecting ().

View Article and Find Full Text PDF

Harmful algal blooms (HABs) represent a growing threat to aquatic ecosystems and humans. Effective HAB management and mitigation efforts strongly rely on the availability of timely and in-situ tools for the detection of microalgae. In this sense, nucleic acid-based (molecular) methods are being considered for the unequivocal identification of microalgae as an attractive alternative to the currently used time-consuming and laboratory-based light microscopy techniques.

View Article and Find Full Text PDF

Consumption of seafood contaminated with ciguatoxins (CTXs) leads to a foodborne disease known as ciguatera. Primary producers of CTXs are epibenthic dinoflagellates of the genera Gambierdiscus and Fukuyoa. In this study, thirteen Gambierdiscus and Fukuyoa strains were cultured, harvested at exponential phase, and CTXs were extracted with an implemented rapid protocol.

View Article and Find Full Text PDF

Given the threat that ostreid herpesvirus 1 (OsHV-1) poses to shellfish aquaculture, the need for rapid, user-friendly and cost-effective methods to detect this marine pathogen and minimise its impact is evident. In this work, an electrochemical biosensor for the detection of OsHV-1 based on isothermal recombinase polymerase amplification (RPA) was developed. The system was first tested and optimised on maleimide microtitre plates as a proof-of-concept, before being implemented on miniaturised gold electrodes.

View Article and Find Full Text PDF

The use of isothermal nucleic acid amplification strategies to detect harmful algal blooms (HABs) is in its infancy. We describe recent advances in these systems and highlight the challenges for the achievement of simple, low-cost, compact, and portable devices for field applications.

View Article and Find Full Text PDF

Ostreopsis cf. ovata is a benthic microalga distributed in tropical and temperate regions worldwide which produces palytoxins (PlTXs). Herein, an electrochemical biosensor for the detection of this toxic microalga is described.

View Article and Find Full Text PDF

Ostreopsis is a toxic benthic dinoflagellate largely distributed worldwide in tropical and temperate areas. In the Mediterranean Sea, periodic summer blooms have been reported and have become a serious concern due to their direct impact on human health and the environment. Current microalgae identification is performed via light microscopy, which is time-consuming and is not able to differentiate among Ostreopsis species.

View Article and Find Full Text PDF

An electrochemical genosensor for the detection and quantification of Karlodinium armiger is presented. The genosensor exploits tailed primers and ferrocene labelled dATP analogue to produce PCR products that can be directly hybridised on a gold electrode array and quantitatively measured using square wave voltammetry. Tailed primers consist of a sequence specific for the target, followed by a carbon spacer and a sequence specifically designed not to bind to genomic DNA, resulting in a duplex flanked by single stranded binding primers.

View Article and Find Full Text PDF
Article Synopsis
  • Karlodinium is a harmful dinoflagellate that causes fish kills globally, with two significant species found in Alfacs Bay, each having different toxicity levels.
  • Researchers developed a method using recombinase polymerase amplification (RPA) combined with an enzyme-linked oligonucleotide assay (ELONA) to quickly and accurately identify and quantify these species.
  • This new method is more effective than traditional microscopy, enabling faster detection at lower concentrations (50,000 cells/L), making it a promising tool for monitoring harmful algal blooms.
View Article and Find Full Text PDF

Ostreid herpesvirus-1 (OsHV-1) has been involved in mass mortality episodes of Pacific oysters Crassostrea gigas throughout the world, causing important economic losses to the aquaculture industry. In the present study, magnetic beads (MBs) coated with an anionic polymer were used to capture viable OsHV-1 from two types of naturally infected matrix: oyster homogenate and seawater. Adsorption of the virus on the MBs and characterisation of the MB-virus conjugates was demonstrated by real-time quantitative PCR (qPCR).

View Article and Find Full Text PDF
Article Synopsis
  • Rapid immunoassay methods have been developed to detect diarrhetic shellfish poisoning (DSP) toxins in seawater, essential for protecting public health and the shellfish industry.* ! -
  • These assays specifically target okadaic acid (OA) and two related toxins, achieving a detection limit of about 1 ng OA equiv./mL in seawater, and have been tested on samples from Catalan harbors and the Galician Rias.* ! -
  • Findings show that OA levels in seawater correlate with Dinophysis cell counts, but with a delay of 1-2 weeks, indicating that these immunoassays could serve as effective, high-throughput monitoring tools for DSP toxins.* !
View Article and Find Full Text PDF