Behavior of quantum liquids is a fascinating topic in physics. Even in a strongly correlated case, the linear response of a given system to an external field is described by the fluctuation-dissipation relations based on the two-body correlations in the equilibrium. However, to explore nonlinear non-equilibrium behaviors of the system beyond this well-established regime, the role of higher order correlations starting from the three-body correlations must be revealed.
View Article and Find Full Text PDFThe sensitivity of shot noise to the interplay between Kondo correlations and superconductivity is investigated in a carbon nanotube quantum dot connected to superconducting electrodes. Depending on the gate voltage, the SU(2) and SU(4) Kondo unitary regimes can be clearly identified. We observe enhancement of the shot noise via the Fano factor in the superconducting state.
View Article and Find Full Text PDFUniversal properties of entangled many-body states are controlled by their symmetry and quantum fluctuations. By the magnetic-field tuning of the spin-orbital degeneracy in a Kondo-correlated quantum dot, we have modified quantum fluctuations to directly measure their influence on the many-body properties along the crossover from SU(4) to SU(2) symmetry of the ground state. High-sensitive current noise measurements combined with the nonequilibrium Fermi liquid theory clarify that the Kondo resonance and electron correlations are enhanced as the fluctuations, measured by the Wilson ratio, increase along the symmetry crossover.
View Article and Find Full Text PDFWe performed noise measurements for a Corbino disk in the quantum Hall effect breakdown regime. We investigated two Corbino-disk-type devices with different sizes and observed that the Fano factor increases when the length between the contacts doubles. This observation is consistent with the avalanche picture suggested by the bootstrap electron heating model.
View Article and Find Full Text PDF