Publications by authors named "Tokumasa Horiike"

Species phylogenetic trees represent the evolutionary processes of organisms, and they are fundamental in evolutionary research. Therefore, new methods have been developed to obtain more reliable species phylogenetic trees. A highly reliable method is the construction of an ortholog data set based on sequence information of genes, which is then used to infer the species phylogenetic tree.

View Article and Find Full Text PDF

Nitrogen fixation plays a crucial role in the nitrogen cycle by helping to convert nitrogen into a form usable by other organisms. Bacteria capable of fixing nitrogen are found in six phyla including Cyanobacteria. Molybdenum dependent nitrogenase () genes are thought to share a single origin as they have homologs in various phyla.

View Article and Find Full Text PDF

The spirochete species Leptospira interrogans is the most common cause of leptospirosis, producing acute to chronic infections in most mammalian species. This pathogenic bacterium has an ability to evolve in many ways to occupy various environments and hosts. In this study, we performed chronology analysis to look for insight into the emergence of Leptospira species, focusing on L.

View Article and Find Full Text PDF

Odorant coreceptor (Orco) represents one of the essential genes in the insect olfactory system, which facilitates signal transduction and heterodimerization with different odorant receptors (Ors) in the insect antennal dendritic membrane. Evolutionary analysis by detecting positive selection is important to examine the functional flexibility of Orco that potentially supports insect survival. The maximum likelihood codon substitution model was applied using CODEML program as implemented in PAML ver 4.

View Article and Find Full Text PDF

ITALIC! Pectobacterium carotovorumsubsp. ITALIC! carotovorumand its lytic bacteriophage PPWS1 were isolated from a Japanese horseradish rhizome with soft rot. Sequencing of the phage genomic DNA suggested that PPWS1 is a new species of the family ITALIC! Podoviridaeand has high similarity to the bacteriophage Peat1 infectious to ITALIC! P.

View Article and Find Full Text PDF

Orthologs are widely used for phylogenetic analysis of species; however, identifying genuine orthologs among distantly related species is challenging, because genes obtained through horizontal gene transfer (HGT) and out-paralogs derived from gene duplication before speciation are often present among the predicted orthologs. We developed a program, "Ortholog-Finder," to obtain ortholog data sets for performing phylogenetic analysis by using all open-reading frame data of species. The program includes five processes for minimizing the effects of HGT and out-paralogs in phylogeny construction: 1) HGT filtering: Genes derived from HGT could be detected and deleted from the initial sequence data set by examining their base compositions.

View Article and Find Full Text PDF

Unlabelled: Horizontal gene transfer (HGT) is a common event in prokaryotic evolution. Therefore, it is very important to consider HGT in the study of molecular evolution of prokaryotes. This is true also for conducting computer simulations of their molecular phylogeny because HGT is known to be a serious disturbing factor for estimating their correct phylogeny.

View Article and Find Full Text PDF

The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. To date, four paternally methylated DMRs have been identified in screens based on conventional approaches. These DMRs are linked to the imprinted genes H19, Gtl2 (IG-DMR), Rasgrf1 and, most recently, Zdbf2 which encodes zinc finger, DBF-type containing 2.

View Article and Find Full Text PDF

Lake Victoria harbors hundreds of cichlid species, which have aggressively developed their morphological features through their evolution. In particular, the shapes of jaws and teeth have diverged markedly, and correlate with feeding ecology. These species are believed to have explosively arisen within the last 15,000 years and are therefore of particular interest to evolutionary biologists.

View Article and Find Full Text PDF

Here, we constructed a phylogenetic tree of 17 bacterial phyla covering eubacteria and archaea by using a new method and 102 carefully selected orthologs from their genomes. One of the serious disturbing factors in phylogeny construction is the existence of out-paralogs that cannot easily be found out and discarded. In our method, out-paralogs are detected and removed by constructing a phylogenetic tree of the genes in question and examining the clustered genes in the tree.

View Article and Find Full Text PDF

There is currently no consensus on the evolutionary origin of eukaryotes. In the search of the ancestors of eukaryotes, we analyzed the phylogeny of 46 genomes, including those of 2 eukaryotes, 8 archaea, and 36 eubacteria. To avoid the effects of gene duplications, we used inparalog pairs of genes with orthologous relationships.

View Article and Find Full Text PDF

The construction of accurate prokaryotic phylogeny is important not only in the field of evolutionary biology, but also in microbiology and pathology. However, in constructing a phylogenetic tree to trace prokaryotic evolution, the phylogenetic relationship is often changed by the choice of species. For the estimation of the accurate lineage of prokaryotes, a new method, named the "random extraction method", was developed.

View Article and Find Full Text PDF

Molecular chaperones are a wide group of unrelated protein families whose role is to assist others proteins. Comparably, under environmental stress, stress proteins behave as biocatalysts of protein stabilization. Stress proteins include a large class of proteins that were originally termed heat shock proteins (HSPs) due to their initial discovery in tissues exposed to elevated temperatures.

View Article and Find Full Text PDF

Attempts were made to define the relationship among the three domains (eukaryotes, archaea, and eubacteria) using phylogenetic tree analyses of 16S rRNA sequences as well as of other protein sequences. Since the results are inconsistent, it is implied that the eukaryotic genome has a chimeric structure. In our previous studies, the origin of eukaryotes to be the symbiosis of archaea into eubacteria using the whole open reading frames (ORF) of many genomes was suggested.

View Article and Find Full Text PDF

The Lake Victoria Cichlid fishes have diverged very rapidly. The estimated 500 species inhabiting the lake are believed to have arisen within the last 14,000 years. The fishes' jaws and teeth have diverged markedly to adapt to different feeding behaviors and environments.

View Article and Find Full Text PDF

Vertebrate genomes are mosaics of isochores. On the assumption that marked differences exist in the isochore structure between warm-blooded and cold-blooded animals, variations among vertebrates were previously attributed to adaptation to homeothermy. However, based on the data of coding regions from representatives of extant vertebrates, including a turtle, a crocodile (Archosauromorpha) and a few kinds of snakes (Lepidosauromorpha), it was recently hypothesized that the common ancestors of mammals, birds and extant reptiles already had the "warm-blooded" isochore structure.

View Article and Find Full Text PDF

In the previous report, we demonstrated the origin of eukaryotic cell nuclei as the symbiosis of Archaea in Bacteria by the newly developed "Homology-Hit Analysis". In that case, we counted yeast Open Reading Frames (ORFs) showing the highest similarity to a bacterial ORF as orthologous ORFs (Orthologous ORFs were produced by speciation from a common ancestor, and have the highest similarity to each other.) by comparing whole ORFs of yeast with those of individual bacteria.

View Article and Find Full Text PDF

Codon usages are known to vary among vertebrates chiefly due to variations in isochore structure. Under the assumption that marked differences exist in isochore structure between warm-blooded and cold-blooded animals, the variations among vertebrates were previously attributed to an adaptation to homeothermy. However, based on data from a turtle species and a crocodile (Archosauromorpha), it was recently proposed that the common ancestors of mammals, birds and extent reptiles already had the "warm-blooded" isochore structure.

View Article and Find Full Text PDF