AJNR Am J Neuroradiol
January 2023
Background And Purpose: We investigated global and local properties of the structural brain connectivity networks in aspartylglucosaminuria, an autosomal recessive and progressive neurodegenerative lysosomal storage disease. Brain connectivity in aspartylglucosaminuria has not been investigated before, but previous structural MR imaging studies have shown brain atrophy, delayed myelination, and decreased thalamic and increased periventricular WM T2 signal intensity.
Materials And Methods: We acquired diffusion MR imaging and T1-weighted data from 12 patients with aspartylglucosaminuria (mean age, 23 [SD, 8] years; 5 men), and 30 healthy controls (mean age, 25 [SD, 10] years; 13 men).
Magnetic resonance (MR) imaging data can be used to develop computer-assisted diagnostic tools for neurodegenerative diseases such as aspartylglucosaminuria (AGU) and other lysosomal storage disorders. MR images contain features that are suitable for the classification and differentiation of affected individuals from healthy persons. Here, comparisons were made between MRI features extracted from different types of magnetic resonance images.
View Article and Find Full Text PDFAspartylglucosaminuria (AGU) is a rare lysosomal storage disorder causing developmental delay, intellectual disability, and eventual death. A distinct feature in AGU is iron accumulation within the thalamus. Our aim is to demonstrate that susceptibility-weighted images (SWI) could be used as an MRI biomarker to evaluate the response within the AGU population to newly evolving treatments.
View Article and Find Full Text PDFBackground And Purpose: We used diffusion MR imaging to investigate the structural brain connectivity networks in juvenile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disease of childhood. Although changes in conventional MR imaging are typically not visually apparent in children aged <10 years, we previously found significant microstructural abnormalities by using diffusion MR imaging. Therefore, we hypothesized that the structural connectivity networks would also be affected in the disease.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
November 2019
Background And Purpose: Aspartylglucosaminuria is a rare lysosomal storage disorder that causes slowly progressive, childhood-onset intellectual disability and motor deterioration. Previous studies have shown, for example, hypointensity in the thalami in patients with aspartylglucosaminuria on T2WI, especially in the pulvinar nuclei. Susceptibility-weighted imaging is a neuroimaging technique that uses tissue magnetic susceptibility to generate contrast and is able to visualize iron and other mineral deposits in the brain.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
July 2018
Background And Purpose: Juvenile neuronal ceroid lipofuscinosis is a progressive neurodegenerative lysosomal storage disease of childhood. It manifests with loss of vision, seizures, and loss of cognitive and motor functions leading to premature death. Previous MR imaging studies have reported cerebral and cerebellar atrophy, progressive hippocampal atrophy, thalamic signal intensity alterations, and decreased white matter volume in the corona radiata.
View Article and Find Full Text PDFBackground And Purpose: The aim of this study was to identify characteristic 3.0 T brain MRI findings in patients with aspartylglucosaminuria (AGU), a rare lysosomal storage disorder. Previous AGU patient material imaged at 1.
View Article and Find Full Text PDFBackground: Juvenile neuronal ceroid lipofuscinosis is an inherited, autosomal recessive, progressive, neurodegenerative disorder of childhood. It belongs to the lysosomal storage diseases, which manifest with loss of vision, seizures, and loss of cognitive and motor functions, and lead to premature death. Imaging studies have shown cerebral and cerebellar atrophy, yet no previous studies evaluating particularly hippocampal atrophy have been published.
View Article and Find Full Text PDF