We study a quantum information metric (or fidelity susceptibility) in conformal field theories with respect to a small perturbation by a primary operator. We argue that its gravity dual is approximately given by a volume of maximal time slice in an anti-de Sitter spacetime when the perturbation is exactly marginal. We confirm our claim in several examples.
View Article and Find Full Text PDFWe present how the surface-state correspondence, conjectured by Miyaji and Takayanagi, works in the setup of AdS(3)/CFT(2) by generalizing the formulation of a continuous multiscale entanglement renormalization group ansatz. The boundary states in conformal field theories play a crucial role in our formulation and the bulk diffeomorphism is naturally taken into account. We give an identification of bulk local operators which reproduces correct scalar field solutions on AdS(3) and bulk scalar propagators.
View Article and Find Full Text PDFWe introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half.
View Article and Find Full Text PDF