Publications by authors named "Tohru Yoshioka"

Background: Crosstalk between the aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling is called the "AhR-Nrf2 gene battery", which works synergistically in detoxification to support cell survival. Nrf2-dependent phase II gene promoters are controlled by coordinated recruitment of the AhR to adjacent dioxin responsive element (DRE) and Nrf2 recruitment to the antioxidative response element (ARE). The molecular interaction between AhR and Nrf2 members, and the regulation of each target, including phase I and II gene complexes, and their mediators are poorly understood.

View Article and Find Full Text PDF

Human breast milk lipids have major beneficial effects: they promote infant early brain development, growth and health. To identify the relationship between human breast milk lipids and infant neurodevelopment, multivariate analyses that combined lipidomics and psychological Bayley-III scales evaluation were utilized. We identified that 9,12-octadecadiynoic acid has a significantly positive correlation with infant adaptive behavioral development, which is a crucial neurodevelopment to manage risk from environmental stress.

View Article and Find Full Text PDF

Background: Systemic sclerosis (SSc) causes progressive fibrosis of multiple organs with the low efficacy of immunosuppressive therapies. Our previous study indicated the SSc pathological pathways are closely correlated with Ca signals, and blockage of the intracellular Ca elevation facilitates inhibition of SSc pathogenesis.

Objective: Transforming growth factor β (TGF-β)-modulated SMAD signaling is crucial in regulating SSc pathogenesis.

View Article and Find Full Text PDF

Elucidating the mechanisms underlying human pain sensation requires the establishment of an in vitro model of pain reception comprising human cells expressing pain-sensing receptors and function properly as neurons. Human dental pulp stem cells (hDPSCs) are mesenchymal stem cells and a promising candidate for producing human neuronal cells, however, the functional properties of differentiated hDPSCs have not yet been fully characterized. In this study, we demonstrated neuronal differentiation of hDPSCs via both their expression of neuronal marker proteins and their neuronal function examined using Ca2+ imaging.

View Article and Find Full Text PDF

Cancer is an aging-associated disease and caused by genomic instability that is driven by the accumulation of mutations and epimutations in the aging process. Although Ca signaling, reactive oxygen species (ROS) accumulation, DNA damage response (DDR) and senescence inflammation response (SIR) are processed during genomic instability, the underlying mechanism for the cause of genomic instability and cancer development is still poorly understood and needs to be investigated. Nociceptive transient receptor potential (TRP) channels, which firstly respond to environmental stimuli, such as microbes, chemicals or physical injuries, potentiate regulation of the aging process by Ca signaling.

View Article and Find Full Text PDF

As human-origin cells, human dental pulp stem cells (hDPSCs) are thought to be potentially useful for biological and medical experiments. They are easily obtained from lost primary teeth or extracted wisdom teeth, and they are mesenchymal stem cells that are known to differentiate into osteoblasts, chondrocytes, and adipocytes. Although hDPSCs originate from neural crest cells, it is difficult to induce hDPSCs to differentiate into neuron-like cells.

View Article and Find Full Text PDF

Prion protein (PrP) knockout mice, named as the "Ngsk" strain (Ngsk Prnp mice), show late-onset cerebellar Purkinje cell (PC) degeneration because of ectopic overexpression of PrP-like protein (PrPLP/Dpl). Our previous study indicated that the mutant mice also exhibited alterations in cerebellum-dependent delay eyeblink conditioning, even at a young age (16 weeks of age) when neurological changes had not occurred. Thus, this electrophysiological study was designed to examine the synaptic function of the cerebellar cortex in juvenile Ngsk Prnp mice.

View Article and Find Full Text PDF

Aging, cancer, and longevity have been linked to intracellular Ca signaling and nociceptive transient receptor potential (TRP) channels. We found that TRP canonical 7 (TRPC7) is a nociceptive mechanoreceptor and that TRPC7 channels specifically mediate the initiation of ultraviolet B (UVB)-induced skin aging and tumor development due to p53 gene family mutations. Within 30 min after UVB irradiation, TRPC7 mediated UVB-induced Ca influx and the subsequent production of reactive oxygen species in skin cells.

View Article and Find Full Text PDF

Accumulation of oxidative proteins within mitochondria leads to loss of mitochondrial function, which may lead to age-related degenerative diseases. Mitochondrial antioxidant defense capacity reflects the expression of mitochondrial unfolded protein response (mtUPR)-related proteins. Senescent cells are considered to be less resistant to cellular stress stimuli than exponentially growing cells.

View Article and Find Full Text PDF

We review the involvement of a small molecule, oxytocin, in various effects of physical stimulation of somatosensory organs, mindfulness meditation, emotion and fragrance on humans, and then propose a hypothesis that complex human states and behaviors, such as well-being, social bonding, and emotional behavior, are explained by oxytocin. We previously reported that oxytocin can induce pain relief and described the possibility how oxytocin in the dorsal horn and/or the dorsal root ganglion relieves joint and muscle pain. In the present article, we expand our research target from the physical analgesic effects of oxytocin to its psychologic effects to upregulate well-being and downregulate stress and anxiety.

View Article and Find Full Text PDF

Pain in athletes is ideally treated without systemic medicine. Therefore, complementary and alternative medicine, including patch treatments, is often used. The physiologic mechanisms of pain relief produced by patch treatment, however, are not well elucidated.

View Article and Find Full Text PDF

Transforming growth factor-β (TGF-β) is an important target for treating systemic sclerosis (SSc). However, our study revealed three levels of TGF-β1 expression in SSc patients, indicating that inhibiting TGF-β is not sufficient to treat SSc. A previous clinical trial also displayed disappointing results.

View Article and Find Full Text PDF

Although pain is indispensable for survival, chronic pain places a heavy burden on humans. As the efficacy of opioid treatment is limited, the development of alternative methods of pain relief without medication is desirable. Recently, we have developed a novel method of physical analgesia using an adhesive "pyramidal thorn patch.

View Article and Find Full Text PDF

Based on the oxidative stress theory, aging derives from the accumulation of oxidized proteins induced by reactive oxygen species (ROS) in the cytoplasm. Hydrogen peroxide (HO) elicits ROS that induces skin aging through oxidation of proteins, forming disulfide bridges with cysteine or methionine sulfhydryl groups. Decreased Ca signaling is observed in aged cells, probably secondary to the formation of disulfide bonds among Ca signaling-related proteins.

View Article and Find Full Text PDF

Orientia (O.) tsutsugamushi-induced scrub typhus is endemic across many regions of Asia and the Western Pacific, where an estimated 1 million cases occur each year; the majority of patients infected with O. tsutsugamushi end up with a cytokine storm from a severe inflammatory response.

View Article and Find Full Text PDF

Ultraviolet-B (UVB) is one of the most cytotoxic and mutagenic stresses that contribute to skin damage and aging through increasing intracellular Ca(2+) and reactive oxygen species (ROS). Derinat (sodium deoxyribonucleate) has been utilized as an immunomodulator for the treatment of ROS-associated diseases in clinics. However, the molecular mechanism by which Derinat protects skin cells from UVB-induced damage is poorly understood.

View Article and Find Full Text PDF

The activity of thermo-transient receptor potential (TRP) channels is highly dependent on temperature, and thus thermo-TRP reactions have a high temperature coefficient Q 10. In thermodynamics, a high value of Q 10 indicates the existence of a large activation energy (i.e.

View Article and Find Full Text PDF

Transient receptor potential (TRP) channels in skin are crucial for achieving temperature sensitivity to maintain internal temperature balance and thermal homeostasis, as well as to protect skin cells from environmental stresses such as infrared (IR) or near-infrared (NIR) radiation via heat shock protein (Hsp) production. However, the mechanisms by which IR and NIR activate TRP channels and produce Hsps intracellularly have been independently reported. In this review, we discuss the relationship between TRP channel activation and Hsp production, and introduce the roles of several skin TRP channels in the regulation of HSP production by IR and NIR exposure.

View Article and Find Full Text PDF
Article Synopsis
  • Pain and itch are distinct yet related sensations, making it challenging to differentiate their signals in the brain, even with advanced imaging techniques.
  • This study utilized near infrared spectroscopy (NIRS), a more practical method, to observe real-time changes in blood flow related to pain and itch in the brain's frontal cortex.
  • Findings indicated that pain and itch trigger different activation patterns in the prefrontal cortex, with distinct blood flow response times, marking a significant step in understanding how these sensations are processed in the human brain.
View Article and Find Full Text PDF

Cytokines released from microglia mediate defensive responses in the brain, but the underlying mechanisms are obscure. One proposed process is that nucleotide leakage or release from surrounding cells is sensed by metabotropic (P2Y) and ionotropic (P2X) purinergic receptors, which may trigger long-term intracellular Ca(2+) flux and tumor necrosis factor α (TNF-α) release. Indeed, 3h of exposure to ATP was required to evoke TNF-α release from a murine microglial cell line (MG5).

View Article and Find Full Text PDF

Mice lacking the prion protein (PrP(C)) gene (Prnp), Ngsk Prnp (0/0) mice, show late-onset cerebellar Purkinje cell (PC) degeneration because of ectopic overexpression of PrP(C)-like protein (PrPLP/Dpl). Because PrP(C) is highly expressed in cerebellar neurons (including PCs and granule cells), it may be involved in cerebellar synaptic function and cerebellar cognitive function. However, no studies have been conducted to investigate the possible involvement of PrP(C) and/or PrPLP/Dpl in cerebellum-dependent discrete motor learning.

View Article and Find Full Text PDF

What is the general principle of sensory transduction? Sensory transduction is defined as energy transformation from the external world to the internal world. The energy of the external world, such as thermal energy (heat), electro-magnetic energy (light), mechanical energy (sound) and the energy from molecules (chemicals), is converted into electrochemical events in the animal nervous system. The following five classes of special sense receptors are utilized for energy conversion: vision (photo); audition (sound); taste and smell (chemo); and tactile (mechano).

View Article and Find Full Text PDF
Physical aspects of medical science.

Kaohsiung J Med Sci

February 2012

Physical aspects of medical science involve making physical models, physical approaches, and measurements by physical instruments. Among these, the physical approach is the most important for an exact elucidation of the physiological function of living materials. What is a physical approach? In the first step, the molecular mechanism of visual transduction will be demonstrated by considering the physical characteristics of diffusion of second messengers.

View Article and Find Full Text PDF

Regulation of cellular redox balances is important for the homeostasis of human health. Thus, many important human diseases, such as inflammation, diabetes, glaucoma, cancers, ischemia and neurodegenerative diseases, have been investigated in the field of reactive oxygen species (ROS) and oxidative stress. To overcome the harmful effect of oxidative stress and ROS, one can directly eliminate them by medical gases such as carbon monoxide (CO), hydrogen sulphide (H(2)S), and molecular hydrogen (H(2)), or one can induce ROS-resistant proteins and antioxidant enzymes to antagonize oxidative stresses.

View Article and Find Full Text PDF