Calcium and calmodulin-dependent protein kinase II (CaMKII) plays a fundamental role in the synaptic plasticity events that underlie learning and memory. Regulation of CaMKII kinase activity occurs through an autoinhibitory mechanism in which a regulatory domain of the kinase occupies the catalytic site and calcium/calmodulin activates the kinase by binding to and displacing this regulatory domain. A single putative ortholog of CaMKII, encoded by unc-43, is present in the Caenorhabditis elegans nervous system.
View Article and Find Full Text PDFAlpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors mediate the majority of excitatory signaling in the CNS, and the functional properties and subcellular fate of these receptors depend on receptor subunit composition. Subunit assembly is thought to occur in the endoplasmic reticulum (ER), although we are just beginning to understand the underlying mechanism. Here we examine the trafficking of Caenorhabditis elegans glutamate receptors through the ER.
View Article and Find Full Text PDFThe two major chemoreceptors of Escherichia coli, Tsr and Tar, mediate opposite responses to the same changes in cytoplasmic pH (pH(i)). We set out to identify residues involved in pH(i) sensing to gain insight into the general mechanisms of signaling employed by the chemoreceptors. Characterization of various chimeras of Tsr and Tar localized the pH(i)-sensing region to Arg(259)-His(267) of Tar and Gly(261)-Asp(269) of Tsr.
View Article and Find Full Text PDF