Introduction: Tau aggregation into paired helical filaments and neurofibrillary tangles is characteristic of Alzheimer's disease (AD) and related disorders. However, biochemical assays for the quantification of soluble, earlier-stage tau aggregates are lacking. We describe an immunoassay that is selective for tau oligomers and related soluble aggregates over monomers.
View Article and Find Full Text PDFApolipoprotein E (ApoE) has become a primary focus of research after the discovery of its strong linkage to Alzheimer's disease (AD), where the ApoE4 variant is the highest genetic risk factor for this disease. ApoE is commonly found in amyloid deposits of different origins, and its interaction with amyloid-β peptide (Aβ), the hallmark of AD, is well known. However, studies on the interaction of ApoEs with other amyloid-forming proteins are limited.
View Article and Find Full Text PDFBackground: Immunogold labeling in combination with transmission electron microscopy analysis is a technique frequently used to correlate high-resolution morphology studies with detailed information regarding localization of specific antigens. Although powerful, the methodology has limitations and it is frequently difficult to acquire a stringent system where unspecific low-affinity interactions are removed prior to analysis.
Results: We here describe a combinatorial strategy where surface plasmon resonance and immunogold labeling are used followed by a direct analysis of the sensor-chip surface by scanning electron microscopy.
Alzheimer's disease (AD) is strongly linked to amyloid depositions of the Aβ peptide (Aβ). The lipid-binding protein apolipoprotein E (ApoE) has been found to interfere with Aβ amyloid formation and to exert a strong clinical impact to the pathology of AD. The APOE gene exists in three allelic isoforms represented by APOE ε2, APOE ε3, and APOE ε4.
View Article and Find Full Text PDFWe demonstrate the use of Scanning Electron microscopy (SEM) in combination with Surface Plasmon Resonance (SPR) to probe and verify the formation of amyloid and its morphology on an SPR chip. SPR is a technique that measures changes in the immobilized weight on the chip surface and is frequently used to probe the formation and biophysical properties of amyloid structures. In this context it is of interest to also monitor the morphology of the formed structures.
View Article and Find Full Text PDFThe pathological Aβ aggregates associated with Alzheimer's disease follow a nucleation-dependent path of formation. A nucleus represents an oligomeric assembly of Aβ peptides that acts as a template for subsequent incorporation of monomers to form a fibrillar structure. Nuclei can form de novo or via surface-catalyzed secondary nucleation, and the combined rates of elongation and nucleation control the overall rate of fibril formation.
View Article and Find Full Text PDFFibril formation of the amyloid-β peptide (Aβ) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aβ are observed in vivo, but Aβ1-40 and Aβ1-42 are the dominant forms. The fibril architectures of Aβ1-40 and Aβ1-42 differ and Aβ1-42 assemblies are generally considered more pathogenic.
View Article and Find Full Text PDFLow pH has a strong stabilising effect on the fibrillar assembly of amyloid β, which is associated with Alzheimer's disease. The stabilising effect is already pronounced at pH 6.0, suggesting that protonation of histidines might mediate this effect.
View Article and Find Full Text PDFGlucocorticoid excess is associated with glucose intolerance and diabetes. In addition to inducing insulin resistance, glucocorticoids impair β-cell function and cause β-cell apoptosis. In this study we show that dexamethasone activates mitogen-activated protein kinases (MAPKs) signaling in MIN6 β-cells, as evident by enhanced phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK).
View Article and Find Full Text PDF