In this study a cutting-edge approach to producing accurate and computationally efficient interatomic potentials using machine learning algorithms is presented. Specifically, the study focuses on the application of Allegro, a novel machine learning algorithm, running on high-performance GPUs for training potentials. The choice of training parameters plays a pivotal role in the quality of the potential functions.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2023
Understanding the behavior of software in execution is a key step in identifying and fixing performance issues. This is especially important in high performance computing contexts where even minor performance tweaks can translate into large savings in terms of computational resource use. To aid performance analysis, developers may collect an execution trace-a chronological log of program activity during execution.
View Article and Find Full Text PDF