Publications by authors named "Toher C"

The Open Databases Integration for Materials Design (OPTIMADE) application programming interface (API) empowers users with holistic access to a growing federation of databases, enhancing the accessibility and discoverability of materials and chemical data. Since the first release of the OPTIMADE specification (v1.0), the API has undergone significant development, leading to the v1.

View Article and Find Full Text PDF

The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor, most innovation has been slowly driven by experimental means. Hence, advancement in the field needs more theoretical contributions.

View Article and Find Full Text PDF

Discovering multifunctional materials with tunable plasmonic properties, capable of surviving harsh environments is critical for advanced optical and telecommunication applications. We chose high-entropy transition-metal carbides because of their exceptional thermal, chemical stability, and mechanical properties. By integrating computational thermodynamic disorder modeling and time-dependent density functional theory characterization, we discovered a crossover energy in the infrared and visible range, corresponding to a metal-to-dielectric transition, exploitable for plasmonics.

View Article and Find Full Text PDF

A metallic, covalently bonded carbon allotrope is predicted via first principles calculations. It is composed of an sp carbon framework that acts as a diamond anvil cell by constraining the distance between parallel cis-polyacetylene chains. The distance between these sp carbon atoms renders the phase metallic, and yields two well-nested nearly parallel bands that cross the Fermi level.

View Article and Find Full Text PDF

High-entropy ceramics are attracting significant interest due to their exceptional chemical stability and physical properties. While configurational entropy descriptors have been successfully implemented to predict their formation and even to discover new materials, the contribution of vibrations to their stability has been contentious. This work unravels the issue by computationally integrating disorder parameterization, phonon modeling, and thermodynamic characterization.

View Article and Find Full Text PDF

The entropy landscape of high-entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature-dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and compare them qualitatively to the enthalpies of mixing. As an experimental complement, high-entropy carbide thin films are synthesized with high power impulse magnetron sputtering to assess structure and properties.

View Article and Find Full Text PDF

The Open Databases Integration for Materials Design (OPTIMADE) consortium has designed a universal application programming interface (API) to make materials databases accessible and interoperable. We outline the first stable release of the specification, v1.0, which is already supported by many leading databases and several software packages.

View Article and Find Full Text PDF

Active learning-the field of machine learning (ML) dedicated to optimal experiment design-has played a part in science as far back as the 18th century when Laplace used it to guide his discovery of celestial mechanics. In this work, we focus a closed-loop, active learning-driven autonomous system on another major challenge, the discovery of advanced materials against the exceedingly complex synthesis-processes-structure-property landscape. We demonstrate an autonomous materials discovery methodology for functional inorganic compounds which allow scientists to fail smarter, learn faster, and spend less resources in their studies, while simultaneously improving trust in scientific results and machine learning tools.

View Article and Find Full Text PDF

High-entropy materials have attracted considerable interest due to the combination of useful properties and promising applications. Predicting their formation remains the major hindrance to the discovery of new systems. Here we propose a descriptor-entropy forming ability-for addressing synthesizability from first principles.

View Article and Find Full Text PDF

A priori prediction of phase stability of materials is a challenging practice, requiring knowledge of all energetically competing structures at formation conditions. Large materials repositories-housing properties of both experimental and hypothetical compounds-offer a path to prediction through the construction of informatics-based, ab initio phase diagrams. However, limited access to relevant data and software infrastructure has rendered thermodynamic characterizations largely peripheral, despite their continued success in dictating synthesizability.

View Article and Find Full Text PDF

Determination of the symmetry profile of structures is a persistent challenge in materials science. Results often vary amongst standard packages, hindering autonomous materials development by requiring continuous user attention and educated guesses. This article presents a robust procedure for evaluating the complete suite of symmetry properties, featuring various representations for the point, factor and space groups, site symmetries and Wyckoff positions.

View Article and Find Full Text PDF

Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities. The prediction's accuracy compares well with the quality of the training data for virtually any stoichiometric inorganic crystalline material, reciprocating the available thermomechanical experimental data.

View Article and Find Full Text PDF

Metallic glasses attract considerable interest due to their unique combination of superb properties and processability. Predicting their formation from known alloy parameters remains the major hindrance to the discovery of new systems. Here, we propose a descriptor based on the heuristics that structural and energetic 'confusion' obstructs crystalline growth, and demonstrate its validity by experiments on two well-known glass-forming alloy systems.

View Article and Find Full Text PDF

Novel surface coordination nanostructures based on cyanosexiphenyl molecules are assembled on a gold surface and investigated by scanning tunneling microscopy and density functional theory. Their formation can be tuned by varying the surface temperature during deposition. Diffusing gold adatoms act as coordination centers for the cyano groups present on one end of the nonsymmetrical molecules.

View Article and Find Full Text PDF

The elastic constant tensor of an inorganic compound provides a complete description of the response of the material to external stresses in the elastic limit. It thus provides fundamental insight into the nature of the bonding in the material, and it is known to correlate with many mechanical properties. Despite the importance of the elastic constant tensor, it has been measured for a very small fraction of all known inorganic compounds, a situation that limits the ability of materials scientists to develop new materials with targeted mechanical responses.

View Article and Find Full Text PDF

Background: Pregnant women living at northerly latitudes are at risk of suboptimal vitamin D status. There is a paucity of studies correlating knowledge, attitudes and practices of vitamin D with serum levels amongst pregnant women. We aimed to determine the prevalence of suboptimal vitamin D status in pregnant women of various ethnicities attending two Dublin maternity hospitals and to assess levels of knowledge, attitudes and practices concerning vitamin D.

View Article and Find Full Text PDF

A single molecule composed of three linked moieties can function as an amplifier of electrical current, when certain conditions are met by the molecular orbitals of the three component parts. This device should exhibit power gain at appropriate voltages. In this work, we will explain a plausible mechanism by which this device should work, and present its operating characteristics.

View Article and Find Full Text PDF

The electronic and geometrical structure of single difluoro-bora-1,3,5,7-tetraphenyl-aza-dipyrromethene (aza-BODIPY) molecules adsorbed on the Au(111) surface is investigated by low temperature scanning tunneling microscopy and spectroscopy in conjunction with ab initio density functional theory simulations of the density of states and of the interaction with the substrate. Our DFT calculations indicate that the aza-bodipy molecule forms a chemical bond with the Au(111) substrate, with distortion of the molecular geometry and significant charge transfer between the molecule and the substrate. Nevertheless, most likely due to the low corrugation of the Au(111) surface, diffusion of the molecule is observed for applied bias in excess of 1 V.

View Article and Find Full Text PDF

Background: Consumption of healthy diets that contribute with adequate amounts of fat and fatty acids is needed for children. Among Guatemalan children, there is little information about fat intakes. Therefore, the present study sought to assess intakes of dietary fats and examine food sources of those fats in Guatemalan children.

View Article and Find Full Text PDF

Density-functional theory calculations of electronic transport based on local exchange and correlation functionals contain self-interaction errors. As a consequence, insulating molecules in weak contact with metallic electrodes erroneously form highly conducting junctions. Here we present a fully self-consistent and still computationally undemanding self-interaction correction scheme that overcomes these limitations.

View Article and Find Full Text PDF

All density-functional calculations of single-molecule transport to date have used continuous exchange-correlation approximations. The lack of derivative discontinuity in such calculations leads to the erroneous prediction of metallic transport for insulating molecules. A simple and computationally undemanding atomic self-interaction correction (SIC) opens conduction gaps in I-V characteristics that otherwise are predicted metallic, as in the case of the prototype Au/ditholated-benzene/Au junction.

View Article and Find Full Text PDF

Left ventricular assist devices unload the left ventricle and decrease left atrial pressure. This hemodynamic change may cause a right to left atrial shunt and hypoxemia in patients with patent foramen ovale. We prospectively studied the best time for performing diagnostic transesophageal echocardiography in left ventricular assist device patients.

View Article and Find Full Text PDF

There is an 80-90% mortality rate within the first 2 months of the occurrence of a post-infarction ventricular septal defect (VSD) with medical treatment alone. The muscular VSD presents a technical problem for the surgeon. Surgical treatment was unsuccessful in two patients.

View Article and Find Full Text PDF

Beta-actin is a cytoskeletal protein that has been implicated as a potentially important mediator of the growth, signaling, migration, and remodeling of cells. Beta-actin is upregulated in remodeling myocardium in response to either pressure or volume overload. The cellular localization of this response has, however, not been determined and is a necessary first step to begin to clarify the role of beta-actin in myocardial remodeling.

View Article and Find Full Text PDF

The AngelWings device is a newer transcatheter device used for closure of secundum atrial septal defects (ASD) and patent foramen ovale (PFO), which consists of a self-centering, 2-disk system. Transesophageal echocardiography (TEE) plays a pivotal role in the deployment of the 2 disks of this device, on the appropriate sides of the atrial septum. The objective of this study is to describe the echocardiographic findings associated with successful deployment of the AngelWings device for closure of ASD and PFO.

View Article and Find Full Text PDF