Background: Older critically ill patients experience rapid muscle loss during stay in an intensive care unit (ICU) due to physiological stress and increased catabolism. This may lead to increased ICU length of stay, delayed weaning from ventilation and persistent functional limitations. We hypothesized that with optimal nutrition and early physical therapy acting in synergism, we can reduce muscle mass loss and improve functional outcomes.
View Article and Find Full Text PDFHere, we present a rational approach that enhances the membrane selectivity of a prolific pore-forming peptide, melittin, based on experimental observations that the cationic polymer, ε-polylysine, disrupts bacterial membranes with greater affinity over mammalian cells when compared to poly-l-lysine and poly-d-lysine. We systematically replaced three α-lysine residues in melittin with ε-lysine residues and identified key residues that are important for cytotoxicity. We then assessed the antimicrobial properties of the modified peptides which carry two or three ε-lysyl residues.
View Article and Find Full Text PDFLignin is the second most abundant biopolymer on the planet. It is a biocompatible, cheap, environmentally friendly and readily accessible material. It has been reported that these biomacromolecules have antimicrobial activities.
View Article and Find Full Text PDF