Publications by authors named "Toft-Petersen R"

Control of magnetization and electric polarization is attractive in relation to tailoring materials for data storage and devices such as sensors or antennae. In magnetoelectric materials, these degrees of freedom are closely coupled, allowing polarization to be controlled by a magnetic field, and magnetization by an electric field, but the magnitude of the effect remains a challenge in the case of single-phase magnetoelectrics for applications. We demonstrate that the magnetoelectric properties of the mixed-anisotropy antiferromagnet LiNiFePO are profoundly affected by partial substitution of Ni ions with Fe on the transition metal site.

View Article and Find Full Text PDF

The European Spallation Source (ESS) is intended to become the most powerful spallation neutron source in the world and the flagship of neutron science in upcoming decades. The exceptionally high neutron flux will provide unique opportunities for scientific experiments but also set high requirements for the detectors. One of the most challenging aspects is the rate capability and in particular the peak instantaneous rate capability, the number of neutrons hitting the detector per channel or cm at the peak of the neutron pulse.

View Article and Find Full Text PDF

We present neutron-diffraction data for the cubic-heavy-fermion YbBiPt that show broad magnetic diffraction peaks due to the fragile short-range antiferromagnetic (AFM) order persist under an applied magnetic-field . Our results for and a temperature of show that magnetic diffraction peak can be described by the same two-peak line shape found for below the Néel temperature of . Both components of the peak exist for , which is well past the AFM phase boundary determined from our new resistivity data.

View Article and Find Full Text PDF

Adding impurities or defects destroys crystalline order. Occasionally, however, extraordinary behaviour emerges that cannot be explained by perturbing the ordered state. One example is the Kondo effect, where magnetic impurities in metals drastically alter the temperature dependence of resistivity.

View Article and Find Full Text PDF

We present detailed neutron scattering studies of the static and dynamic stripes in an optimally doped high-temperature superconductor, La_{2}CuO_{4+y}. We observe that the dynamic stripes do not disperse towards the static stripes in the limit of vanishing energy transfer. Therefore, the dynamic stripes observed in neutron scattering experiments are not the Goldstone modes associated with the broken symmetry of the simultaneously observed static stripes, and the signals originate from different domains in the sample.

View Article and Find Full Text PDF

The first experimental characterization of a multiple energy analysis wide angle backend for a cold triple-axis spectrometer is reported. The multi-analyzer module MultiFLEXX employs 155 detection channels which simultaneously probe an extensive range in wavevector and energy transfer. Successful mapping of magnetic excitations in MnF and Ho demonstrate order of magnitude gains in data collection efficiency using this novel type backend.

View Article and Find Full Text PDF

We report ac susceptibility, specific heat, and neutron scattering measurements on a dipolar-coupled antiferromagnet LiYbF_{4}. For the thermal transition, the order-parameter critical exponent is found to be 0.20(1) and the specific-heat critical exponent -0.

View Article and Find Full Text PDF

We present a combined magnetic neutron scattering and muon spin rotation study of the nature of the magnetic and superconducting phases in electronically phase separated La(2-x)Sr(x)CuO(4+y), x=0.04, 0.065, 0.

View Article and Find Full Text PDF

The crystal structures of two Delafossites, Cu3Ni2SbO6 and Cu3Co2SbO6, are determined by high-resolution synchrotron powder X-ray diffraction. The Ni and Co are ordered with respect to Sb in the layer of edge sharing octahedra, forming magnetic layers with honeycomb geometry. High-resolution electron microscopy confirms ordering, and selected-area electron diffraction patterns identify examples of the stacking polytypes.

View Article and Find Full Text PDF

A quantum magnet, LiCuSbO4, with chains of edge-sharing spin-1/2 CuO6 octahedra is reported. While short-range order is observed for T<10  K, no zero-field phase transition or spin freezing occurs down to 100 mK. Specific heat indicates a distinct high-field phase near the 12 T saturation field.

View Article and Find Full Text PDF