Publications by authors named "Tofilon P"

PRMT5 is a widely expressed arginine methyltransferase that regulates processes involved in tumor cell proliferation and survival. In the study described here, we investigated whether PRMT5 provides a target for tumor radiosensitization. Knockdown of PRMT5 using siRNA enhanced the radiosensitivity of a panel of cell lines corresponding to tumor types typically treated with radiotherapy.

View Article and Find Full Text PDF

Radiotherapy is the standard treatment for glioblastoma (GBM), but the overall survival rate for radiotherapy treated GBM patients is poor. The use of adjuvant and concomitant temozolomide (TMZ) improves the outcome; however, the effectiveness of this treatment varies according to MGMT levels. Herein, we evaluated whether MGMT expression affected the radioresponse of human GBM, GBM stem-like cells (GSCs), and melanoma.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma (GBM) has a low two-year survival rate of under 30%, but valproic acid (VPA) combined with chemo-radiation therapy (CRT) has shown positive effects on survival in trials.
  • This study aimed to analyze changes in protein expression before and after CRT with VPA versus standard CRT, to see how these changes relate to patient outcomes and to uncover VPA's mechanisms of action.
  • Serum samples from 29 patients receiving CRT with VPA and 53 receiving CRT alone were examined for protein expression changes, using advanced statistical methods to identify significant associations with survival rates.
View Article and Find Full Text PDF

Background: The invasive nature of GBM combined with the diversity of brain microenvironments creates the potential for a topographic heterogeneity in GBM radioresponse. Investigating the mechanisms responsible for a microenvironment-induced differential GBM response to radiation may provide insights into the molecules and processes mediating GBM radioresistance.

Methods: Using a model system in which human GBM stem-like cells implanted into the right striatum of nude mice migrate throughout the right hemisphere (RH) to the olfactory bulb (OB), the radiation-induced DNA damage response was evaluated in each location according to γH2AX and 53BP1 foci and cell cycle phase distribution as determined by flow cytometry and immunohistochemistry.

View Article and Find Full Text PDF

A fundamental component of cellular radioresponse is the translational control of gene expression. Because a critical regulator of translational control is the eukaryotic translation initiation factor 4F (eIF4F) cap binding complex, we investigated whether eIF4A, the RNA helicase component of eIF4F, can serve as a target for radiosensitization. Knockdown of eIF4A using siRNA reduced translational efficiency, as determined from polysome profiles, and enhanced tumor cell radiosensitivity as determined by clonogenic survival.

View Article and Find Full Text PDF

Increased ribosome biogenesis is a distinguishing feature of cancer cells, and small molecule inhibitors of ribosome biogenesis are currently in clinical trials as single agent therapy. It has been previously shown that inhibiting ribosome biogenesis through the inhibition of nuclear export of ribosomal subunits sensitizes tumor cells to radiotherapy. In this study, the radiosensitizing potential of CX-5461, a small molecule inhibitor of RNA polymerase I, was tested.

View Article and Find Full Text PDF
Article Synopsis
  • Targeting the translation machinery in cells can improve the effectiveness of radiotherapy by altering how cells respond to radiation.
  • Key proteins involved in translation, particularly the eIF4F complex and regulatory kinases, have been identified as potential targets for making tumor cells more sensitive to radiation.
  • Inhibiting the initiation of translation and ribosome production can hinder DNA repair processes in tumor cells, leading to enhanced radiosensitization, with practical implications for future patient treatments.
View Article and Find Full Text PDF

Glioblastoma is the most common primary brain malignancy and carries with it a poor prognosis. New agents are urgently needed, however nearly all Phase III trials of GBM patients of the past 25 years have failed to demonstrate improvement in outcomes. In 2019, the National Cancer Institute Clinical Trials and Translational Research Advisory Committee (CTAC) Glioblastoma Working Group (GBM WG) identified 5 broad areas of research thought to be important in the development of new herapeutics for GBM.

View Article and Find Full Text PDF

AZD0530, a potent small-molecule inhibitor of the Src kinase family, is an anticancer drug used in the treatment of various cancers. In the case of glioblastoma (GBM), where resistance to radiotherapy frequently occurs, Src kinase is known as one of the molecules responsible for imparting radioresistance to GBM. Thus, we evaluated the effect of AZD0530 on the radiosensitivity of human GBM cells and human glioblastoma stem-like cells (GSCs).

View Article and Find Full Text PDF

Dynamic nuclear polarization (DNP) of C-labeled substrates enables the use of magnetic resonance imaging (MRI) to monitor specific enzymatic reactions in tumors and offers an opportunity to investigate these differences. In this study, DNP-MRI chemical shift imaging with hyperpolarized [1- C] pyruvate was conducted to evaluate the metabolic change in glycolytic profiles after radiation of two glioma stem-like cell-derived gliomas (GBMJ1 and NSC11) and an adherent human glioblastoma cell line (U251) in an orthotopic xenograft mouse model. The DNP-MRI showed an increase in Lac/Pyr at 6 and 16 h after irradiation (18% ± 4% and 14% ± 3%, respectively; mean ± SEM) compared with unirradiated controls in GBMJ1 tumors, whereas no significant change was observed in U251 and NSC11 tumors.

View Article and Find Full Text PDF

Ionizing radiation is a critical component of glioblastoma (GBM) therapy. Recent data have implicated glioblastoma stem-like cells (GSCs) as determinants of GBM development, maintenance, and treatment response. Understanding the response of GSCs to radiation should thus provide insight into the development of improved GBM treatment strategies.

View Article and Find Full Text PDF

Radiation therapy is a mainstay in the standard of care for glioblastoma (GBM), thus inhibiting the DNA damage response (DDR) is a major strategy to improve radiation response and therapeutic outcomes. Small interfering RNA (siRNA) therapy holds immeasurable potential for the treatment of GBM, however delivery of the siRNA payload remains the largest obstacle for clinical implementation. Here we demonstrate the effectiveness of the novel nanomaterial, ECO (1-aminoethylimino[bis(N-oleoylcysteinylaminoethyl) propionamide]), to deliver siRNA targeting DDR proteins ataxia telangiectasia mutated and DNA-dependent protein kinase (DNApk-cs) for the radiosensitzation of GBM in vitro and in vivo.

View Article and Find Full Text PDF

Purpose: Glioblastoma (GBM) is characterized by extensive clonal diversity suggesting the presence of tumor cells with varying degrees of treatment sensitivity. Radiotherapy is an integral part of glioblastoma treatment. Whether GBMs are comprised of spatially distinct cellular populations with uniform or varying degrees of radiosensitivity has not been established.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a challenging diagnosis with almost universally poor prognosis. Though the survival advantage of postoperative radiation (RT) is well established, around 90% of patients will fail in the RT field. The high likelihood of local failure suggests the efficacy of RT needs to be improved to improve clinical outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • This study evaluates the impact of adding Valproic Acid (VPA), an antiepileptic drug with histone deacetylase inhibitor properties, to standard radiation and temozolomide treatments in patients with glioblastoma (GBM), as compared to historical data from standard care protocols.* -
  • A total of 37 patients participated in the phase II trial, which demonstrated improved median overall survival (OS) of 30.9 months and progression-free survival (PFS) of 11.1 months, significantly better than the 18.9 months OS and 7.5 months PFS seen in the RTOG 0525 study.* -
  • Key factors influencing survival outcomes included
View Article and Find Full Text PDF

Purpose: The various microenvironments that exist within the brain combined with the invasive nature of glioblastoma (GBM) creates the potential for a topographic influence on tumor cell radiosensitivity. The aim of this study was to determine whether specific brain microenvironments differentially influence tumor cell radioresponse.

Methods And Materials: GBM stem-like cells were implanted into the right striatum of nude mice.

View Article and Find Full Text PDF

A consequence of the intratumor heterogeneity (ITH) of glioblastoma (GBM) is the susceptibility to treatment-driven evolution. To determine the potential of radiotherapy to influence GBM evolution, we used orthotopic xenografts initiated from CD133 GBM stem-like cells (GSC). Toward this end, orthotopic xenografts grown in nude mice were exposed to a fractionated radiation protocol, which resulted in a significant increase in animal survival.

View Article and Find Full Text PDF

Aberrant activation of the PI3K-mTOR signaling pathway occurs in >80% of head and neck squamous cell carcinomas (HNSCC), and overreliance on this signaling circuit may in turn represent a cancer-specific vulnerability that can be exploited therapeutically. mTOR inhibitors (mTORi) promote tumor regression in genetically defined and chemically induced HNSCC animal models, and encouraging results have been recently reported. However, the mTOR-regulated targets contributing to the clinical response have not yet been identified.

View Article and Find Full Text PDF

Introduction: Glioblastoma (GBM) is the most common primary malignant brain tumor in humans and, even with aggressive treatment that includes surgical resection, radiation (IR), and chemotherapy administration, prognosis is poor due to tumor recurrence. There is evidence that within GBMs a small number of glioma stem-like cells (GSLCs) exist, which are thought to be therapy resistant and are thus capable of repopulating a tumor after treatment. Like most cancers, GBMs largely employ aerobic glycolysis to create ATP, a phenomenon known as the Warburg Effect.

View Article and Find Full Text PDF

Background: Valproic acid (VPA) is an antiepileptic agent with histone deacetylase inhibitor activity shown to enhance overall survival and progression free survival in patients with newly diagnosed glioblastoma (GBM). This reports on the late toxicity of the VPA/radiotherapy (RT)/temozolomide (TMZ) combination in the long-term survivors of a phase 2 study evaluating this regimen.

Methods: 37 patients with newly diagnosed GBM were initially enrolled on this trial and received combination therapy.

View Article and Find Full Text PDF

Analysis of the radiation-induced translatome of glioblastoma stem-like cells (GSC) identified an interacting network in which XPO1 serves as a major hub protein. To determine whether this nuclear export protein provides a target for radiosensitization, we defined the effects of clinically relevant XPO1 inhibitor selinexor on the radiosensitivity of glioblastoma cells. As determined by clonogenic survival analysis, selinexor enhanced the radiosensitivity of GSCs but not normal fibroblast cell lines.

View Article and Find Full Text PDF

Radiotherapy is a primary treatment modality for glioblastomas (GBM). Because DNA-PKcs is a critical factor in the repair of radiation-induced double strand breaks (DSB), this study evaluated the potential of VX-984, a new DNA-PKcs inhibitor, to enhance the radiosensitivity of GBM cells. Treatment of the established GBM cell line U251 and the GBM stem-like cell (GSC) line NSC11 with VX-984 under conditions resulted in a concentration-dependent inhibition of radiation-induced DNA-PKcs phosphorylation.

View Article and Find Full Text PDF

The processes mediating the repair of DNA double-strand breaks (DSB) are critical determinants of radiosensitivity and provide a source of potential targets for tumor radiosensitization. Among the events required for efficient DSB repair are a variety of post-translational histone modifications, including methylation. Because trimethylation of histone H3 on lysine 27 (H3K27me3) has been associated with chromatin condensation, which can influence DSB repair, we determined the effects of radiation on H3K27me3 levels in tumor and normal cell lines.

View Article and Find Full Text PDF

Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation.

View Article and Find Full Text PDF

Radiation-induced gene expression has long been hypothesized to protect against cell death. Defining this process would provide not only insight into the mechanisms mediating cell survival after radiation exposure, but also a novel source of targets for radiosensitization. However, whereas the radiation-induced gene expression profiles using total cellular mRNA have been generated for cell lines as well as normal tissues, with few exception, the changes in mRNA do not correlate with changes in the corresponding protein.

View Article and Find Full Text PDF