Publications by authors named "Toet K"

Article Synopsis
  • A target discovery pipeline was created to identify drug targets for metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis by using a combination of molecular networks, text mining, and machine learning integrated with clinical data.
  • Key genes influencing disease progression were pinpointed through knockout studies, leading to target efficacy analysis which confirmed the top-5 gene targets, including EP300, as significant contributors to liver fibrosis.
  • Gene-silencing of EP300 notably reduced collagen levels in hepatic cells, demonstrating the pipeline's effectiveness in uncovering relevant drug targets and pathways for treating liver diseases.
View Article and Find Full Text PDF

In obesity-associated non-alcoholic steatohepatitis (NASH), persistent hepatocellular damage and inflammation are key drivers of fibrosis, which is the main determinant of NASH-associated mortality. The short-chain fatty acid butyrate can exert metabolic improvements and anti-inflammatory activities in NASH. However, its effects on NASH-associated liver fibrosis remain unclear.

View Article and Find Full Text PDF

There is a strong anticipated future for human induced pluripotent stem cell-derived hepatocytes (hiPS-HEP), but so far, their use has been limited due to insufficient functionality. We investigated the potential of hiPS-HEP as an in vitro model for metabolic diseases by combining transcriptomics with multiple functional assays. The transcriptomics analysis revealed that 86% of the genes were expressed at similar levels in hiPS-HEP as in human primary hepatocytes (hphep).

View Article and Find Full Text PDF

High-fat diets (HFD) are thought to contribute to the development of metabolism-related diseases. The long-term impact of HFD may be mediated by epigenetic mechanisms, and indeed, HFD has been reported to induce DNA methylation changes in white adipose tissue (WAT) near metabolism related genes. However, previous studies were limited to a single WAT depot, a single time-point and primarily examined the pre-pubertal period.

View Article and Find Full Text PDF

Background & Aims: Anthocyanins may have beneficial effects on lipid metabolism and inflammation and are demonstrated to have hepatoprotective properties in models of restraint-stress- and chemically-induced liver damage. However, their potential to protect against non-alcoholic steatohepatitis (NASH) under conditions relevant for human pathogenesis remains unclear. Therefore, we studied the effects of the standardised anthocyanin-rich extract Mirtoselect on diet-induced NASH in a translational model of disease.

View Article and Find Full Text PDF

Excess caloric intake leads to metabolic overload and is associated with development of type 2 diabetes (T2DM). Current disease management concentrates on risk factors of the disease such as blood glucose, however with limited success. We hypothesize that normalizing blood glucose levels by itself is insufficient to reduce the development of T2DM and complications, and that removal of the metabolic overload with dietary interventions may be more efficacious.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic inflammation and certain lipids increase the risk of cardiovascular disease (CVD), but dietary components like polyphenols and fish oils may help mitigate these risks.
  • A study tested an antiinflammatory dietary mixture (AIDM) on two types of transgenic mice, showing that it decreased inflammatory markers and harmful lipids associated with CVD.
  • Long-term AIDM supplementation significantly reduced the development of atherosclerosis by 96% in female mice, while also lowering key inflammatory markers, indicating its potential benefits for cardiovascular health.
View Article and Find Full Text PDF

Objective: Inflammation plays an important role in all stages of atherosclerosis, but little is known about the therapeutic effects of quenching inflammation in already existing atherosclerotic lesions. Putative beneficial effects of salicylate, an inhibitor of NF-κB activation, were studied in mice with established lesions.

Methods: ApoE*3-Leiden mice received a high-cholesterol diet (HC) to establish atherosclerotic lesions.

View Article and Find Full Text PDF

Background: The sequence of events leading to the development of insulin resistance (IR) as well as the underlying pathophysiological mechanisms are incompletely understood. As reductionist approaches have been largely unsuccessful in providing an understanding of the pathogenesis of IR, there is a need for an integrative, time-resolved approach to elucidate the development of the disease.

Methodology/principal Findings: Male ApoE3Leiden transgenic mice exhibiting a humanized lipid metabolism were fed a high-fat diet (HFD) for 0, 1, 6, 9, or 12 weeks.

View Article and Find Full Text PDF

Objective: Cholesteryl ester transfer protein (CETP) adversely affects the plasma lipoprotein profile by increasing VLDL-cholesterol and decreasing HDL-cholesterol. The relative contribution of either of these changes to atherosclerosis development is not known. We investigated to what extent the increase in VLDL-cholesterol can explain the atherogenic action of human CETP expression in APOE*3-Leiden (E3L) mice, a model for human-like lipoprotein metabolism.

View Article and Find Full Text PDF

Objective: The objective of this study was to systematically evaluate the molecular basis of the association between visceral fat mass and plasma plasminogen activator inhibitor-1 (PAI-1) levels in man.

Design: A comprehensive approach comprising observational, in vitro, and human intervention studies.

Measurements And Results: We confirmed an exclusive relationship between visceral fat and plasma PAI-1 levels (r=0.

View Article and Find Full Text PDF

Objective: To demonstrate, quantify, and mechanistically dissect antiatherosclerotic effects of fenofibrate besides lowering plasma cholesterol per se.

Methods And Results: ApoE*3Leiden transgenic mice received either a high-cholesterol diet (HC) or HC containing fenofibrate (HC+FF) resulting in 52% plasma cholesterol-lowering. In a separate low-cholesterol diet (LC) control group, plasma cholesterol was adjusted to the level achieved in the HC+FF group.

View Article and Find Full Text PDF

It has been suggested that elevated leptin levels underlie the low grade proinflammatory state in human obesity. We reasoned that if elevated leptin levels are an important factor in the proinflammatory state in obesity, then exogenous leptin administration during weight loss should counteract the concurrent beneficial effects of weight loss on the proinflammatory state. We therefore determined whether long-acting pegylated recombinant leptin (PEG-OB) prevents the decrease in cellular and humoral inflammation parameters during a very low calorie diet in healthy overweight young men.

View Article and Find Full Text PDF

Background: Patients treated with peritoneal dialysis frequently suffer from recurrent peritonitis episodes. During peritonitis, inflammatory mediators are released and a serofibrinous exudate is formed in the peritoneal cavity, which promotes fibrosis and abdominal adhesion development. Human peritoneal mesothelial cells (HMC) play a critical role in maintaining the intraperitoneal balance between fibrinolysis and coagulation by expressing the fibrinolytic enzyme tissue-type plasminogen activator (t-PA) and its specific inhibitor, plasminogen activator inhibitor-1 (PAI-1) as well as the procoagulant protein, tissue factor.

View Article and Find Full Text PDF

Background: The continuous physical and chemical irritation of the peritoneum in peritoneal dialysis patients can result in a nonbacterial serositis with increased fibrin deposition, thus promoting peritoneal fibrosis and adhesion development. By expressing the fibrinolytic enzyme tissue-type plasminogen activator (t-PA) and its specific inhibitor, plasminogen activator inhibitor-1 (PAI-1), human peritoneal mesothelial cells (HMC) play an important role in regulating peritoneal fibrinolysis.

Methods: Cultured HMC were used to examine the effect of a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, simvastatin, on the expression of t-PA and PAI-1.

View Article and Find Full Text PDF

Background: The mesothelium has an important role in maintaining an adequate fibrinolytic capacity in the peritoneal cavity and thus in preventing the formation of fibrinous peritoneal adhesions by secreting the fibrinolytic enzyme tissue-type plasminogen activator (t-PA). The fibrinolytic activity of human mesothelial cells (HMCs) is counteracted by rapid uptake of t-PA via the low-density lipoprotein receptor-related protein (LRP). The 39 kD receptor-associated protein (RAP) is an inhibitor of binding of t-PA to LRP, but RAP itself is also rapidly degraded via LRP.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMP) types 2 and 9 (also known as gelatinase A and B) are thought to be causally involved in cancer invasion and metastasis. In normal as well as in malignant tissue, both these MMPs occur in multiple forms such as inactive precursors, active enzymes and enzyme-inhibitor complexes. Using newly developed quantitative activity assays, the levels of active MMP-2, total (active and activatable) MMP-2 and total MMP-9 were found to be significantly higher in breast carcinomas than in fibroadenomas.

View Article and Find Full Text PDF

Several clinical studies have demonstrated an inverse relationship between circulating levels of estrogen and tissue-type plasminogen activator (t-PA). The present study was designed to test the hypothesis that estrogens lower plasma levels of t-PA by increasing its clearance from the bloodstream. 17alpha-Ethinyl estradiol (EE) treatment resulted in a significant increase in the clearance rate of recombinant human t-PA in mice (0.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) play an important role in many pathologic processes, but their activities are difficult to determine since no simple specific and/or chromogenic substrate exists. We have developed a novel MMP activity assay using a modified urokinase as a substrate. Protein engineering enabled the plasmin activation site in this urokinase to be substituted by a specific activation site recognized by MMPs.

View Article and Find Full Text PDF

Background: Human mesothelial cells (HMCs) have an important role in maintaining an adequately functioning fibrinolytic system in the peritoneal cavity by secreting the fibrinolytic enzymes tissue-type and urokinase-type plasminogen activator (t-PA and u-PA), as well as a specific PA inhibitor, PA inhibitor type 1 (PAI-1). In this study, we investigated whether the fibrinolytic capacity of HMCs is further counterbalanced by rapid uptake of t-PA and u-PA from the medium.

Methods: Cultured HMCs were used to study the uptake and degradation of radiolabeled t-PA and u-PA in the absence or presence of an inhibitor of cellular protein degradation, chloroquine, and of specific receptor antagonists.

View Article and Find Full Text PDF

We have characterized the regulation of plasminogen activator inhibitor-1 (PAI-1) gene expression by phorbol 12-myristate 13-acetate (PMA), serum, and interleukin-1alpha (IL-1alpha) in the human hepatoma cell line HepG2. PMA, serum, and IL-1alpha induced a rapid and transient 28-fold (PMA), 9-fold (serum), and 23-fold (IL-1alpha) increase in PAI-1 mRNA, peaking after approximately 4 hours. These inductions of PAI-1 mRNA accumulation were reduced by pretreatment of the HepG2 cells with the protein tyrosine kinase inhibitor genistein.

View Article and Find Full Text PDF

Human peritoneal mesothelial cells (HMC) play a critical role in maintaining the intraperitoneal balance between fibrinolysis and coagulation by expressing the fibrinolytic enzyme tissue-type plasminogen activator (t-PA) as well as a specific plasminogen activator inhibitor, PAI-1, and the procoagulant protein tissue factor (TF). Of three compounds known to stimulate t-PA synthesis in cultured human endothelial cells, i.e.

View Article and Find Full Text PDF

Retinoids stimulate tissue-type plasminogen-activator (t-PA) gene expression in human endothelial cells, and are likely to do so by binding to one or more nuclear retinoid receptors. The present study was initiated to identify the retinoid receptor(s) involved in this process. Expression and regulation of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) were analyzed by Northern-blot analysis of total or poly(A)-rich RNA prepared from cultured human umbilical vein endothelial cells (HUVEC).

View Article and Find Full Text PDF

We have previously shown that the pleiotropic agent sodium butyrate strongly stimulates tissue-type plasminogen activator (t-PA) expression in human umbilical vein endothelial cells (HUVEC). Here we provide the following evidence that the butyrate-induced t-PA expression in HUVEC involves histone H4 acetylation. (1) t-PA induction by butyrate occurs at the transcriptional level and does not require new protein synthesis, indicating a direct effect.

View Article and Find Full Text PDF