Star-shaped molecules with three mutually immiscible arms self-assemble to form a variety of novel structures, with conformations that attempt to minimize interfacial area between the domains composed of the different arms. The geometric frustration caused by the joining of these arms at a common centre limits the size and shape of each domain, encouraging the creation of complex and interesting solutions. Some solutions are tricontinuous, and these solutions (and others) share aspects of bicontinuous structures with amphiphilic assemblies as similar molecular segregation factors are at work.
View Article and Find Full Text PDFKirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum.
View Article and Find Full Text PDFWe use a regular arrangement of kirigami elements to demonstrate an inverse design paradigm for folding a flat surface into complex target configurations. We first present a scheme using arrays of disclination defect pairs on the dual to the honeycomb lattice; by arranging these defect pairs properly with respect to each other and choosing an appropriate fold pattern a target stepped surface can be designed. We then present a more general method that specifies a fixed lattice of kirigami cuts to be performed on a flat sheet.
View Article and Find Full Text PDFIn this Letter we explore and develop a simple set of rules that apply to cutting, pasting, and folding honeycomb lattices. We consider origami-like structures that are extrinsically flat away from zero-dimensional sources of Gaussian curvature and one-dimensional sources of mean curvature, and our cutting and pasting rules maintain the intrinsic bond lengths on both the lattice and its dual lattice. We find that a small set of rules is allowed providing a framework for exploring and building kirigami—folding, cutting, and pasting the edges of paper.
View Article and Find Full Text PDFSilica mesoporous crystals (SMCs) offer a unique opportunity to study micellar mesophases. Replication of non-equilibrium mesophases into porous silica structures allows the characterization of surfactant phases under a variety of chemical and physical perturbations, through methods not typically accessible to liquid crystal chemists. A poignant example is the use of electron microscopy and crystallography, as discussed herein, for the purpose of determining the fundamental role of amphiphile curvature, namely mean curvature and Gaussian curvature, which have been extensively studied in various fields such as polymer, liquid crystal, biological membrane, etc.
View Article and Find Full Text PDFWe construct some examples of finite and infinite crystalline three-dimensional nets derived from symmetric reticulations of homogeneous two-dimensional spaces: elliptic (S (2)), Euclidean (E (2)) and hyperbolic (H (2)) space. Those reticulations are edges and vertices of simple spherical, planar and hyperbolic tilings. We show that various projections of the simplest symmetric tilings of those spaces into three-dimensional Euclidean space lead to topologically and geometrically complex patterns, including multiple interwoven nets and tangled nets that are otherwise difficult to generate ab initio in three dimensions.
View Article and Find Full Text PDFThe replication of amphiphilic systems within an inorganic silica matrix allows the study of the fundamental properties of mesostructural changes, that is, kinetic and structural parameters. Herein we report a detailed study of the transition between cubic bicontinuous mesostructure with space groups Ia ̅3d and Pn ̅3m symmetry, which are associated with the minimal G and D surfaces, respectively. The transition may be induced through micellar swelling of the anionic amphiphilic surfactant N-lauroyl alanine by trimethylbenzene.
View Article and Find Full Text PDFHere we report a novel hard-templating strategy for the synthesis of mesoporous monocrystalline Pt nanoparticles (NPs) with uniform shapes and sizes. Mesoporous Pt NPs were successfully prepared through controlled chemical reduction using ascorbic acid by employing 3D bicontinuous mesoporous silica (KIT-6) and 2D mesoporous silica (SBA-15) as a hard template. The particle size could be controlled by changing the reduction time.
View Article and Find Full Text PDF