Publications by authors named "Toelzer C"

Transcription initiation involves the coordination of multiple events, starting with activators binding specific DNA target sequences, which recruit transcription coactivators to open chromatin and enable binding of general transcription factors and RNA polymerase II to promoters. Two key human transcriptional coactivator complexes, ATAC (ADA-two-A-containing) and SAGA (Spt-Ada-Gcn5 acetyltransferase), containing histone acetyltransferase (HAT) activity, target genomic loci to increase promoter accessibility. To better understand the function of ATAC and SAGA HAT complexes, we used in vitro biochemical and biophysical assays to characterize human ATAC and SAGA HAT module interactions with nucleosomes and how a transcription factor (TF) coordinates these interactions.

View Article and Find Full Text PDF

Adenovirus-derived nanoparticles (ADDomer) comprise 60 copies of adenovirus penton base protein (PBP). ADDomer is thermostable, rendering the storage, transport, and deployment of ADDomer-based therapeutics independent of a cold chain. To expand the scope of ADDomers for new applications, we engineered ADDobodies, representing PBP crown domain, genetically separated from PBP multimerization domain.

View Article and Find Full Text PDF

The COVID-19 pandemic and concomitant lockdowns presented a global health challenge and triggered unprecedented research efforts to elucidate the molecular mechanisms and pathogenicity of SARS-CoV-2. The spike glycoprotein decorating the surface of SARS-CoV-2 virions is a prime target for vaccine development, antibody therapy and serology as it binds the host cell receptor and is central for viral cell entry. The electron cryo-microscopy structure of the spike protein revealed a hydrophobic pocket in the receptor-binding domain that is occupied by an essential fatty acid, linoleic acid (LA).

View Article and Find Full Text PDF

As coronavirus disease 2019 (COVID-19) persists, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) emerge, accumulating spike (S) glycoprotein mutations. S receptor binding domain (RBD) comprises a free fatty acid (FFA)-binding pocket. FFA binding stabilizes a locked S conformation, interfering with virus infectivity.

View Article and Find Full Text PDF
Article Synopsis
  • CRISPR gene-editing faces challenges in delivering multiple components due to the limited capacity of traditional viral vectors, which hampers genome engineering efforts.
  • Researchers have utilized the high DNA cargo capacity of baculovirus to create a single viral vector that carries Cas9, sgRNA, and Donor DNAs, achieving significant success in gene editing.
  • This innovative approach allows for precise delivery of genome-editing tools, including large DNA payloads and prime-editing toolkits, greatly improving the potential for effective genetic interventions in human cells.
View Article and Find Full Text PDF

UPF3 is a key nonsense-mediated mRNA decay (NMD) factor required for mRNA surveillance and eukaryotic gene expression regulation. UPF3 exists as two paralogs (A and B) which are differentially expressed depending on cell type and developmental stage and believed to regulate NMD activity based on cellular requirements. UPF3B mutations cause intellectual disability.

View Article and Find Full Text PDF

As the global burden of SARS-CoV-2 infections escalates, so does the evolution of viral variants with increased transmissibility and pathology. In addition to this entrenched diversity, RNA viruses can also display genetic diversity within single infected hosts with co-existing viral variants evolving differently in distinct cell types. The BriSΔ variant, originally identified as a viral subpopulation from SARS-CoV-2 isolate hCoV-19/England/02/2020, comprises in the spike an eight amino-acid deletion encompassing a furin recognition motif and S1/S2 cleavage site.

View Article and Find Full Text PDF

The baculovirus expression vector system (BEVS) delivers high yield heterologous protein expression and is widely used in academic and industrial R&D. The proteins produced enable many applications including structure/function analysis, drug screening and manufacture of protein therapeutics. Vital cellular functions are controlled by multi-protein complexes, MultiBac, a BEVS specifically designed for heterologous multigene delivery and expression, has unlocked many of these machines to atomic resolution studies.

View Article and Find Full Text PDF

We investigate binding of linoleate and other potential ligands to the recently discovered fatty acid binding site in the SARS-CoV-2 spike protein, using docking and molecular dynamics simulations. Simulations suggest that linoleate and dexamethasone stabilize the locked spike conformation, thus reducing the opportunity for ACE2 interaction. In contrast, cholesterol may expose the receptor-binding domain by destabilizing the closed structure, preferentially binding to a different site in the hinge region of the open structure.

View Article and Find Full Text PDF

The new halogenated 1H-triazolo[4,5-b]pyridines and 1H-imidazo[4,5-b]pyridines were synthesised as analogues of known CK2 inhibitors: 4,5,6,7-tetrabromo-1H-benzotriazole (TBBt) and 4,5,6,7-tetrabromo-1H-benzimidazole (TBBi). Their influence on the activity of recombinant human CK2α, CK2α' and PIM1 kinases was determined. The most active inhibitors were di- and trihalogenated 1H-triazolo[4,5-b]pyridines (4a, 5a and 10a) with IC values 2.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a global crisis. Key to SARS-CoV-2 therapeutic development is unraveling the mechanisms that drive high infectivity, broad tissue tropism, and severe pathology. Our 2.

View Article and Find Full Text PDF

In plant innate immunity, enhanced disease susceptibility 1 (EDS1) integrates all pathogen-induced signals transmitted by TIR-type NLR receptors. Driven by an N-terminal α/β-hydrolase-fold domain with a protruding interaction helix, EDS1 assembles with two homologs, phytoalexin-deficient 4 (PAD4) and senescence-associated gene 101 (SAG101). The resulting heterodimers are critical for EDS1 function and structurally well characterized.

View Article and Find Full Text PDF

The identification of initial lead conditions for successful protein crystallization is crucial for structural studies using X-ray crystallography. In order to reduce the number of false-negative conditions, an emerging number of fluorescence-based methods have been developed which allow more efficient identification of protein crystals and help to distinguish them from salt crystals. Detection of the native tryptophan fluorescence of protein crystals is one of the most widely used methods.

View Article and Find Full Text PDF