Introduction: Large-scale trials showed positive outcomes of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in adults with chronic kidney disease (CKD). Whether the use of SGLT2i is safe and effective in patients with the common hereditary CKD Alport syndrome (AS) has not yet been investigated specifically in larger cohorts.
Methods: This observational, multicenter, international study (NCT02378805) assessed 112 patients with AS after start of SGLT2i.
Key Points: Higher levels of IL-6, IL-8, monocyte chemoattractant protein-1, TNF-, and IFN- in patients with autosomal dominant polycystic kidney disease highlight inflammation's role in disease progression. Elevated inflammatory markers in autosomal dominant polycystic kidney disease could serve as biomarkers for progression and targets for therapy.
Background: Autosomal dominant polycystic kidney disease (ADPKD) is a genetic ciliopathy that causes adult-onset progressive renal failure.
Immune thrombotic thrombocytopenic purpura (iTTP) is a rare, life-threatening autoimmune disorder caused by a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS13) deficiency. Caplacizumab, an anti-von Willebrand factor nanobody, is approved for iTTP treatment, reducing the need for therapeutic plasma exchange (TPE) and improving platelet count recovery and survival. We conducted a retrospective study on 42 acute iTTP cases in Austria and Germany, treated with a modified regimen aimed at avoiding TPE if platelet count increased after the first caplacizumab dose.
View Article and Find Full Text PDFBackground: Autosomal dominant polycystic kidney disease (ADPKD) leads to progressive renal cyst formation and loss of kidney function in most patients. Vasopressin 2 receptor antagonists (V2RA) like tolvaptan are currently the only available renoprotective agents for rapidly progressive ADPKD. However, aquaretic side effects substantially limit their tolerability and therapeutic potential.
View Article and Find Full Text PDFBackgound: Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, and leads to a steady loss of kidney function in adulthood. The variable course of the disease makes it necessary to identify the patients with rapid disease progression who will benefit the most from targeted therapies and interventions. Currently, magnetic resonance imaging-based volumetry of the kidney is the most commonly used tool for this purpose.
View Article and Find Full Text PDFRationale & Objective: Hyponatremia is the most common electrolyte disorder and is associated with significant morbidity and mortality. This study investigated neurocognitive impairment, brain volume, and alterations in magnetic resonance imaging (MRI)-based measures of cerebral function in patients before and after treatment for hyponatremia.
Study Design: Prospective cohort study.
Mammalian preimplantation development is associated with marked metabolic robustness, and embryos can develop under a wide variety of nutrient conditions, including even the complete absence of soluble amino acids. Here we show that mouse embryonic stem cells (ESCs) capture the unique metabolic state of preimplantation embryos and proliferate in the absence of several essential amino acids. Amino acid independence is enabled by constitutive uptake of exogenous protein through macropinocytosis, alongside a robust lysosomal digestive system.
View Article and Find Full Text PDFKetogenic dietary interventions (KDIs) are beneficial in animal models of autosomal-dominant polycystic kidney disease (ADPKD). KETO-ADPKD, an exploratory, randomized, controlled trial, is intended to provide clinical translation of these findings (NCT04680780). Sixty-six patients were randomized to a KDI arm (ketogenic diet [KD] or water fasting [WF]) or the control group.
View Article and Find Full Text PDFBackground: The identification of new biomarkers in autosomal-dominant polycystic kidney disease (ADPKD) is crucial to improve and simplify prognostic assessment as a basis for patient selection for targeted therapies. analyses of the TEMPO 3:4 study indicated that copeptin could be one of those biomarkers.
Methods: Copeptin was tested in serum samples from patients of the AD(H)PKD study.
Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent genetic cause of kidney failure. Tolvaptan, a vasopressin 2 receptor antagonist, is the first drug with proven disease-modifying activity. Long-term treatment adherence is crucial, but a considerable fraction of patients discontinue treatment, because of aquaretic side effects.
View Article and Find Full Text PDFMinimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) are glomerulopathies associated with nephrotic syndrome. Primary forms of these diseases are treated with various regimes of immunosuppression. Frequently relapsing or glucocorticoid-dependent courses remain challenging.
View Article and Find Full Text PDFIntroduction: Autosomal-dominant polycystic kidney disease (ADPKD) is the most common genetic cause of kidney failure. Because of the heterogeneity in disease progression in ADPKD, parameters predicting future outcome are important. The disease-causing genetic variant is one of these parameters.
View Article and Find Full Text PDFKey Points: Cardiovascular disease—a key driver of morbidity in CKD—is common in patients with autosomal dominant polycystic kidney disease (ADPKD). Pathologic echocardiography findings, including valvular defects, aortic root dilation, and hypertrophy, are found in most patients with ADPKD. These findings correlate with parameters indicating disease progression in ADPKD.
View Article and Find Full Text PDFBackground: Vascular abnormalities and endothelial dysfunction are part of the spectrum of autosomal dominant polycystic kidney disease (ADPKD). The mechanisms behind these manifestations, including potential effects on the endothelial surface layer (ESL) and glycocalyx integrity, remain unknown.
Methods: Forty-five ambulatory adult patients with ADPKD were enrolled in this prospective, observational, cross-sectional, single-centre study.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease. Patients at high risk of severe disease progression should be identified early in order to intervene with supportive and therapeutic measures. However, the glomerular filtration rate (GFR) may remain within normal limits for decades until decline begins, making it a late indicator of rapid progression.
View Article and Find Full Text PDFBackground: Ketogenic dietary interventions (KDI) have been shown to be effective in animal models of polycystic kidney disease (PKD), but data from clinical trials are lacking.
Methods: Ten autosomal dominant PKD (ADPKD) patients with rapid disease progression were enrolled at visit V1 and initially maintained a carbohydrate-rich diet. At V2, patients entered one of the two KDI arms: a 3-day water fast (WF) or a 14-day ketogenic diet (KD).
Background Acute kidney injury (AKI) is a major risk factor for chronic kidney disease and increased mortality. Until now, no compelling preventive or therapeutic strategies have been identified. Dietary interventions have been proven highly effective in organ protection from ischemia reperfusion injury in mice and restricting dietary intake of sulfur-containing amino acids (SAA) seems to be instrumental in this regard.
View Article and Find Full Text PDFCells acquire essential nutrients from the environment and utilize adaptive mechanisms to survive when nutrients are scarce. How nutrients are trafficked and compartmentalized within cells and whether they are stored in response to stress remain poorly understood. Here, we investigate amino acid trafficking and uncover evidence for the lysosomal transit of numerous essential amino acids.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFTissue stem cells are the cell of origin for many malignancies. Metabolites regulate the balance between self-renewal and differentiation, but whether endogenous metabolic pathways or nutrient availability predispose stem cells towards transformation remains unknown. Here, we address this question in epidermal stem cells (EpdSCs), which are a cell of origin for squamous cell carcinoma.
View Article and Find Full Text PDFBackground: The impact of chronic moderate and profound hyponatremia on neurocognitive performance, motor skills, and mood stability has not been investigated systematically so far, and results regarding mild to moderate hyponatremia are inconsistent. Furthermore, it is not known whether treatment has an effect on outcome in these patients.
Methods: A total of 130 hospitalized patients with confirmed euvolemic hyponatremia (<130 mEq/L) were subjected to a test battery (Mini-Mental State Examination, DemTect, Trail-Making Tests A and B, Beck Depression Inventory, Timed-up-and-go Test) before and after treatment; additionally, 50 normonatremic group-matched patients served as reference group.
Glioblastomas are lethal brain tumors that are treated with conventional radiation (X-rays and gamma rays) or particle radiation (protons and carbon ions). Paradoxically, radiation is also a risk factor for GBM development, raising the possibility that radiotherapy of brain tumors could promote tumor recurrence or trigger secondary gliomas. In this study, we determined whether tumor suppressor losses commonly displayed by patients with GBM confer susceptibility to radiation-induced glioma.
View Article and Find Full Text PDFUnlabelled: Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults and is universally fatal. The DNA alkylating agent temozolomide is part of the standard-of-care for GBM. However, these tumors eventually develop therapy-driven resistance and inevitably recur.
View Article and Find Full Text PDF