Publications by authors named "Todor A Chaushev"

The cryopreservation of human spermatozoa is an integral part of cryobiology, aiming to support the in-vitro fertilization. The latter relies on the availability of as much as possible reproductively active spermatozoa, whose number after thawing decreases due to the accompanied freezing injury and the cytotoxicity of cryoprotectants. An innovative option to circumvent these obstacles is to make the freezing interface non-wettable, by coating it with rapeseed oil soot possessing intrinsic cryoprotective properties, delaying the ice formation and possibly providing identical rates of intracellular dehydration and extracellular crystallization.

View Article and Find Full Text PDF

The fourth industrial revolution extensively reshapes the reality we are living in by blurring the boundaries of physical, digital and biological worlds. A good example is the previously unthinkable incursion of nanoscale waste materials, such as soot, into the technologies for assisted reproduction. Although the rapeseed oil soot may efficiently enhance the progressive motility of human spermatozoa, it is yet unknown whether this material induces undesirable oxidative stress and premature acrosome reaction, endangering the sperm-oocyte fusion and blastocyst formation.

View Article and Find Full Text PDF

The restoration of initial functionality of human spermatozoa subjected to cryopreservation is challenging, because the deleterious intracellular icing and the occurrence of osmotic shocks due to prolonged exposure to increased concentrations of intracellular solutes are oppositely dependent on the cooling rate. This longstanding problem could be overcome if using superhydrophobic soot coatings delaying the heat transfer rate, reducing the ice formation probability and triggering balanced and timely dehydration of the cells, but the effect of their surface profile and sperm volume on the success rate of slow freezing is unclear. Here, we show for the first time that the two-factor freezing injury is entirely avoidable by tailoring the solid-to-gas voids (pores) fraction in the soot, leading to increased nucleation free energy barrier, presumable incipiency of ice crystals with controllable shape and size and hence, fully (100 %) recovered post-thaw sperm motility.

View Article and Find Full Text PDF

Obtaining spermatozoa with progressive motility, via postejaculatory activation with pharmacological agents such as theophylline and pentoxifylline, is crucial for the success rate of assisted reproduction in couples with severe male factor infertility. Regrettably, the possibility of premature acrosome reactions and impared oocyte function questions the practical applicability of phosphodiesterase inhibitors. The rapid development of nanotechnologies promotes the use of hydrophobic rapeseed oil soot as a non-cytotoxic biomaterial for sperm motility activation, but the scarcity of knowledge regarding the interactions of soot with components from the seminal plasma hinders the eventual commercialization of this cutting-edge approach.

View Article and Find Full Text PDF

Sperm cryopreservation is vital in combating the human infertility, but regrettably, the toxicity of cryoprotectants and the occurrence of intracellular icing, osmotic shocks or shrinkage of the cells below a given threshold volume greatly affects the success rate of this technique. Using the virtue of nanotechnologies and depositing water-repellent soot nanoparticles on the inner walls of cryovials may outline new directions in the development of cryobiology, but doubts related to the soot's venomosity question its practical implementability. The scientific content of this article eliminates the existing apprehensions by analyzing the cytotoxicity of three types of rapeseed oil soot, differing in morphology, surface chemistry and zeta potential, towards human spermatozoa.

View Article and Find Full Text PDF

Nowadays, the tremendous progress of nanotechnologies and materials science facilitates the fabrication of universal and multifunctional superhydrophobic surfaces on a large scale. Yet, integrating icephobic and anti-bioadhesive properties in an individual water-repellent functional coating, for addressing the difficulties faced by cryobiologists, aircraft, and seacraft manufacturers, is quite tricky but feasible if using nonpolar soot nanoparticles, whose fragility, however, impedes their industrial applicability. Here, we advance the current state-of-the-art to an extent, permitting the introduction of economically affordable and ultradurable non-wettable soot-based coatings.

View Article and Find Full Text PDF

With the increasing demand in regenerative and reproductive medicine for successful conservation of living matter, the need of reliable platform in cell banking seems inevitable. Whilst the cells storage at cryogenic temperatures is a well-developed method, far less is known about the efficiency of nanotechnology in cryogenics. The primary objective of this study is to represent the first of its kind experimental results related to cryopreservation of human spermatozoa by means of superhydrophobic carbon soot coatings.

View Article and Find Full Text PDF

The functionality of human spermatozoa is a key factor for the success rate of natural human reproduction, but unfortunately the infertility progressively increases due to multifarious environmental factors. Such disquieting statistics requires the employment of sophisticated computer-assisted methods for semen quality analysis, whose precision, however, is unreliable in cases of patients with low sperm concentrations. In this study, we report a novel quartz crystal microbalance (QCM) based biosensor for in-situ quality assessment of male gametes, comprising a superhydrophobic soot coating as an interface sensing material.

View Article and Find Full Text PDF

The process of embryo implantation is carried out during the receptive stage of the endometrium in the midluteal phase of the menstrual cycle, known as window of implantation (WOI). It has been assumed that the WOI is not a constant variable in all women and the determination of its displacement is of crucial importance, especially for patients with recurrent implantation failure (RIF). Furthermore, in rare cases it could have different duration and position in the menstrual cycle even in the same woman but during different periods.

View Article and Find Full Text PDF

Objective: The purpose of this study was to evaluate the efficacy of frozen mixed double-embryo transfer (MDET; the simultaneous transfer of day 3 and day 5 embryos) in comparison with frozen blastocyst double-embryo transfer (BDET; transfer of two day 5 blastocysts) in patients with repeated implantation failure (RIF).

Methods: A total of 104 women with RIF who underwent frozen MDET (n=48) or BDET (n=56) with excellent-quality embryos were included in this retrospective analysis. All frozen embryo transfers were performed in natural cycles.

View Article and Find Full Text PDF

The purpose of the current study was to further investigate the role of the antioxidant selenium-dependent enzyme glutathione peroxidase (GPx) in reproductive organs and semen from bulls. To this end a fast and convenient combined method for immune detection and substrate localization was adapted, which allows the assessment of both molecular weight and peroxidase activity of proteins on one and the same SDS-PAGE gel plate. After routine semen analysis of ejaculates, a spectrophotometrical assay of GPx activity in bovine semen was performed.

View Article and Find Full Text PDF