The sequencing of the entire human genome was completed in June 2000. The sequence, however, is only a starting point and gene-function is now of major interest. All this information shows that gene-based diagnostics can be helpful for treatment targeting and patient surveillance.
View Article and Find Full Text PDFFamilial hypertrophic cardiomyopathy (HCM or CMH) is a myocardial disorder caused by mutations that affect the contractile machinery of heart muscle cells. Genetic testing of HCM patients is hampered by the fact that mutations in at least eight different genes contribute to the disease. An affordable high-throughput mutation detection method is as yet not available.
View Article and Find Full Text PDFDNA sequencing reveals that the genomes of the human, gorilla and chimpanzee share more than 98% homology. Comparative chromosome painting and gene mapping have demonstrated that only a few rearrangements of a putative ancestral mammalian genome occurred during great ape and human evolution. However, interspecies representational difference analysis (RDA) of the gorilla between human and gorilla revealed gorilla-specific DNA sequences.
View Article and Find Full Text PDFWe report on a newborn female patient with a de novo pure partial duplication of 7q. The clinical features are compared with those of 19 cases from the literature with pure partial duplication of different segments of 7q. Conventional cytogenetic investigation led to the diagnosis of duplication of bands q21.
View Article and Find Full Text PDFCytogenet Cell Genet
March 2001
The mammalian X and Y chromosomes are very different in size and gene content. The Y chromosome is much smaller than the X and consists largely of highly repeated non-coding DNA, containing few active genes. The 65-Mb human Y is homologous to the X over two small pseudoautosomal regions which together contain 13 active genes.
View Article and Find Full Text PDFA 2n = 14 karyotype is shared by some species in each of the marsupial orders in Australian and American superfamilies, suggesting that the ancestral marsupial chromosome complement was 2n = 14. We have used chromosome painting between distantly related marsupial species to discover whether genome arrangements in 2n = 14 species in two Australian orders support this hypothesis. Cross-species chromosome painting was used to investigate chromosome rearrangements between a macropodid species Macropus eugenii (2n = 16) and a wombat species in a different suborder (Lasiorhinus latifrons, 2n = 14), and a dasyurid species in a different order (Sminthopsis macroura, 2n = 14).
View Article and Find Full Text PDFThe genomic nucleotide sequence and chromosomal position of the interleukin 5 (IL5) gene has been described for the model marsupial Macropus eugenii (tammar wallaby). A 272 base pair genomic IL5 polymerase chain reaction (PCR) product spanning exon 3, intron 3, and exon 4 was generated using stripe-faced dunnart (Sminthopsis macroura) DNA. This PCR product was used to isolate a genomic lambda clone containing the complete IL5 gene from a tammar wallaby EMBL3 lambda library.
View Article and Find Full Text PDFMarsupial mammals show extraordinary karyotype stability, with 2n = 14 considered ancestral. However, macropodid marsupials (kangaroos and wallabies) exhibit a considerable variety of karyotypes, with a hypothesised ancestral karyotype of 2n = 22. Speciation and karyotypic diversity in rock wallabies (Petrogale) is exceptional.
View Article and Find Full Text PDFThylogale spp. (pademelons) retain the plesiomorphic (ancestral) 2n = 22 karyotype for the marsupial family Macropodidae (kangaroos and wallabies). The swamp wallaby, Wallabia bicolor, has the most derived macropodid karyotype with the lowest chromosome number (2n = 10 female, 11 male), and a multiple sex chromosome system (XX female, XY1Y2 male).
View Article and Find Full Text PDFComparative chromosome G-/R-banding, comparative gene mapping and chromosome painting techniques have demonstrated that only few chromosomal rearrangements occurred during great ape and human evolution. Interspecies comparative genome hybridization (CGH), used here in this study, between human, gorilla and pygmy chimpanzee revealed species-specific regions in all three species. In contrast to the human, a far more complex distribution of species-specific blocks was detected with CGH in gorilla and pygmy chimpanzee.
View Article and Find Full Text PDFHum Mol Genet
December 1998
The human X and Y chromosomes share two homologous pseudoautosomal regions (PARs) which pair and recombine at meiosis. PAR1 lies at the tips of the short arms, and the smaller PAR2 at the tips of the long arms. PAR1 contains several active genes, and has been thought to be critical for pairing and fertility.
View Article and Find Full Text PDFCytogenet Cell Genet
August 1998
Ohno's early suggestions about the origin of sex chromosomes and the consequences of alterations of dosage of X and Y genes have provided an important framework for understanding sex chromosome organization, function and evolution. Here we review evidence that heteromorphic sex chromosomes evolved from an autosomal pair, and that one of the consequences of X-Y differentiation is the evolution of dosage compensation by X inactivation and upregulation of the active X, which in turn, has selected for a highly conserved X chromosome.
View Article and Find Full Text PDFThe X and Y Chromosomes (Chrs) of eutherian ("placental") mammals share a pseudo-autosomal region (PAR) that pairs and recombines at meiosis. In humans and other eutherians, the PAR contains several active genes and has also been thought to be critical for pairing and fertility. In order to explore the origin of the PAR, we cloned and mapped three human or mouse pseudoautosomal genes in marsupials, a group of mammals that diverged from eutherians about 130 (MYrBP).
View Article and Find Full Text PDFThe three human male specific expressed gene families DAZ, RBM, and TSPY are known to be repetitively clustered in the Y-specific region of the human Y Chromosome (Chr). RBM and TSPY are Y-specifically conserved in simians, whereas DAZ cannot be detected on the Y chromosomes of New World monkeys. The proximity of SRY to the pseudoautosomal region (PAR) is highly conserved and thus most effectively stabilizes the pseudoautosomal boundary on the Y (PABY) in simians.
View Article and Find Full Text PDFWe cloned and mapped the dog and/or sheep homologues of two human pseudoautosomal genes CSF2RA and ANT3. We also cloned and mapped dog and/or sheep homologues of STS and PRKX, which are located nearby on the differential region of the human X and have related genes or pseudogenes on the Y. STS, as well as CSF2RA, mapped to the tips of the short arm of the sheep X and Y (Xp and Yp), and STS and PRKX, as well as ANT3, mapped to the tips of the dog Xp and Y long arm (Yq).
View Article and Find Full Text PDFMarsupial sex chromosomes are smaller than their eutherian counterparts and are thought to reflect an ancestral mammalian X and Y. The gene content of this original X is represented largely by the long arm of the human X chromosome. Genes on the short arm of the human X are autosomal in marsupials and monotremes, and represent a recent addition to the eutherian X and Y.
View Article and Find Full Text PDFCross-species chromosome painting was used to investigate genome rearrangements between tammar wallaby Macropus eugenii (2n = 16) and the swamp wallaby Wallabia bicolor (2n = 10female symbol/11male symbol), which diverged about 6 million years ago. The swamp wallaby has an XX female:XY1Y2 male sex chromosome system thought to have resulted from a fusion between an autosome and the small original X, not involving the Y. Thus, the small Y1 should represent the original Y and the large Y2 the original autosome.
View Article and Find Full Text PDFSeveral genes located within or proximal to the human PAR in Xp22 have homologues on the Y chromosome and escape, or partly escape, inactivation. To study the evolution of Xp22 genes and their Y homologues, we applied multicolour fluorescence in situ hybridization (FISH) to comparatively map DNA probes for the genes ANT3, XG, ARSD, ARSE (CDPX), PRK, STS, KAL and AMEL to prometaphase chromosomes of the human species and hominoid apes. We demonstrate that the genes residing proximal to the PAR have a highly conserved order on the higher primate X chromosomes but show considerable rearrangements on the Y chromosomes of hominoids.
View Article and Find Full Text PDFThe human X-linked DAX1 gene was cloned from the region of the short arm of the human X found in duplicate in sex-reversed Xdup Y females (E. Zanaria et al., 1994, Nature 372: 635-641).
View Article and Find Full Text PDFThree genes, RBM1, DAZ and TSPY, map to a small region of the long arm of the human Y chromosome which is deleted in azoospermic men. RBM1, but not DAZ or TSPY, has a Y-linked homologue in marsupials which is transcribed in the testis. This suggests that RBM1 has been retained on the Y chromosome because of a critical male-specific function.
View Article and Find Full Text PDFCytogenet Cell Genet
September 1997
Marsupial homologs of the human chromosome 10 loci IL2RA, HK1, and PLAU have been cloned and mapped by fluorescence in situ hybridization to chromosome 1q of the tammar wallaby, Macropus eugenii. Relative distance measurements of the hybridization signals on M. eugenii chromosome 1 show that marsupial homologs of human (HSA) 10p IL2RA and 10q HK1/PLAU flank the marsupial homologs of the human 5q gene IL5 and the human 15q imprinted genes SNRPN and ZNF127.
View Article and Find Full Text PDF